74AHC123 Dual Retriggerable Monostable Multivibrator with Reset

GENERAL DESCRIPTION

The 74AHC123 is a high-speed silicon-gate CMOS device. The device is a dual retriggerable monostable multivibrator designed for 2.0V to 5.5V $V_{\rm CC}$ operation.

The 74AHC123 edge-triggered multivibrator features with output pulse width control by three methods. In the first method, the $n\overline{A}$ input is low, and the nB input goes high. In the second method, the nB input is high, and the $n\overline{A}$ input goes low. In the third method, the $n\overline{A}$ input is low, the nB input is high, and the $n\overline{R}D$ input goes high.

Once triggered, the basic output pulse width may be extended by retriggering the gated active low-going edge ($n\overline{A}$) input or the active high-going edge (nB) input. By repeating this process, the output pulse period (nQ = high, $n\overline{Q}$ = low) can be made as long as desired. Alternatively an output delay can be terminated at any time by a low-going edge on $n\overline{R}D$ input, which also inhibits the triggering.

An internal connection from $n\bar{R}D$ to the input gate makes it possible to trigger the circuit by a high-going signal at $n\bar{R}D$ input as shown in function table. Figure 3 and Figure 4 illustrate pulse control by retriggering and early reset.

The output pulse duration is programmed by selecting external resistance (R_{EXT}) and capacitance (C_{EXT}) values.

When $C_{\text{EXT}} \geq 10\text{nF}$, the typical output pulse width is defined as: $t_{\text{W}} = R_{\text{EXT}} \times C_{\text{EXT}}$ where $t_{\text{W}} = \text{pulse}$ width in ns; $R_{\text{EXT}} = \text{external}$ resistor in k Ω ; $C_{\text{EXT}} = \text{external}$ capacitor in pF. Schmitt-trigger action at all inputs makes the circuit highly tolerant to slower input rise and fall times.

FEATURES

- All Inputs Have a Schmitt-Trigger Action
- Inputs Accept Voltages Higher than V_{CC}
- Edge-Triggered from Active High or Active Low Gated Logic Inputs
- Retriggerable for Very Long Pulses up to 100% Duty Factor
- Direct Reset Terminates Output Pulse
- Operates with CMOS Input Levels
- -40°C to +125°C Operating Temperature Range
- Available in a Green SOIC-16 Package

FUNCTION TABLE

	INPUT	OUTPUT		
nRD	nĀ	nQ	nQ	
L	X	X	L	Н
X	Н	X	L*	H*
X	X	L	L*	H*
Н	L	1	Л	П
Н	\downarrow	Н	Л	П
↑	L	Н	Л	L

H = High Voltage Level

L = Low Voltage Level

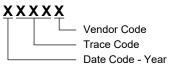
↑ = Low-to-High Transition

↓ = High-to-Low Transition

= One High Level Output Pulse

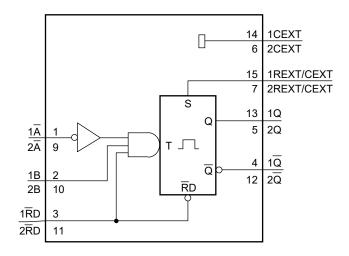
☐ = One Low Level Output Pulse

X = Don't Care

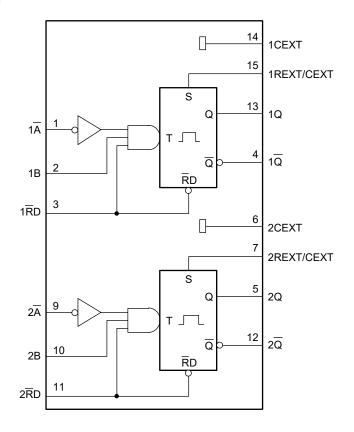

* If the monostable multivibrator was triggered before this condition was established, the pulse will continue as programmed.

PACKAGE/ORDERING INFORMATION

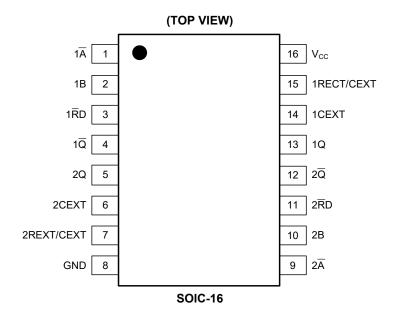
MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
74AHC123	SOIC-16	-40°C to +125°C	74AHC123XS16G/TR	74AHC123XS16 XXXXX	Tape and Reel, 2500


MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.



Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.


LOGIC SYMBOL

LOGIC DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	FUNCTION
1, 9	1Ā, 2Ā	Negative-Edge Triggered Inputs.
2, 10	1B, 2B	Positive-Edge Triggered Inputs.
3, 11	1RD, 2RD	Direct Reset Low and Positive-Edge Triggered Inputs.
4, 12	1Q, 2Q	Active Low Outputs.
13, 5	1Q, 2Q	Active High Outputs.
14, 6	1CEXT, 2CEXT	External Capacitor Connections.
15, 7	1REXT/CEXT, 2REXT/CEXT	External Resistor and Capacitor Connections.
8	GND	Ground.
16	V _{CC}	Supply Voltage.

ELECTRICAL CHARACTERISTICS

(All typical values are measured at T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDIT	MIN	TYP	MAX	UNITS	
		V _{CC} = 2.0V		1.5			V
High-Level Input Voltage	V_{IH}	V _{CC} = 3.0V		2.1			V
		V _{CC} = 5.5V		3.85			V
		V _{CC} = 2.0V				0.5	V
Low-Level Input Voltage	V _{IL}	V _{CC} = 3.0V				0.9	V
		V _{CC} = 5.5V				1.65	V
			$I_{O} = -50 \mu A, V_{CC} = 2.0 V$		1.995		V
			$I_0 = -50 \mu A$, $V_{CC} = 3.0 V$		2.995		V
High-Level Output Voltage	V _{OH}	$V_I = V_{IH}$ or V_{IL}	$I_{O} = -50 \mu A$, $V_{CC} = 4.5 V$		4.495		V
			$I_{O} = -4.0$ mA, $V_{CC} = 3.0$ V		2.8		V
			$I_0 = -8.0 \text{mA}, V_{CC} = 4.5 \text{V}$		4.2		V
	V _{OL}	$V_{I} = V_{IH}$ or V_{IL}	$I_0 = 50 \mu A$, $V_{CC} = 2.0 V$		0.005		V
			$I_0 = 50 \mu A, V_{CC} = 3.0 V$		0.005		V
Low-Level Output Voltage			$I_{\rm O} = 50 \mu A, V_{\rm CC} = 4.5 V$		0.005		V
			I _O = 4.0mA, V _{CC} = 3.0V		0.2		V
			$I_0 = 8.0 \text{mA}, V_{CC} = 4.5 \text{V}$		0.3		V
		$V_{CC} = 0V \text{ to } 5.5V,$	nREXT/CEXT (1)		0.01		μΑ
Input Leakage Current	l _i	V _I = 5.5V or GND	Pins nĀ, nB and nĀD		0.01		μΑ
		V_{CC} = 5.5V, V_{I} = V_{CC} or GN	D, I _O = 0A		0.01		μΑ
			V _{CC} = 3.0V		220		μA
Supply Current	Icc	Active state (per circuit) ⁽¹⁾ $V_1 = V_{CC}$ or GND	V _{CC} = 4.5V		320		μΑ
		AL - ACC OL OLAD	V _{CC} = 5.5V		400		μA
Input Capacitance	Cı		1		5		pF
Output Capacitance	Co						pF

NOTE

1. Voltage on nREXT/CEXT = 0.5 × V_{CC} and pin nREXT/CEXT in off-state during test.

DYNAMIC CHARACTERISTICS

(For test circuit, see Figure 1. All typical values are measured at T_A = +25°C, V_{CC} = 3.3V and V_{CC} = 5.0V respectively, unless otherwise noted.)

PARAMETER	SYMBOL	CON	IDITIONS		MIN	TYP	MAX	UNITS
			0.00/4-0.00/	C _L = 15pF		7.6		ns
		$n\overline{A}$ and nB to nQ and $n\overline{Q}$,	$V_{CC} = 3.0V \text{ to } 3.6V$	C _L = 50pF		10.5		ns
		see Figure 2	4.5)// 5.5)/	C _L = 15pF		5.4		ns
			$V_{CC} = 4.5V \text{ to } 5.5V$	C _L = 50pF		7.3		ns
			.,	C _L = 15pF		8.2		ns
D (1)		nRD to nQ and nQ,	$V_{CC} = 3.0V \text{ to } 3.6V$	C _L = 50pF		11.7		ns
Propagation Delay (1)	t _{PD}	see Figure 2	\	C _L = 15pF		5.6		ns
			$V_{CC} = 4.5V \text{ to } 5.5V$	C _L = 50pF		8.1		ns
			.,	C _L = 15pF		6.8		ns
		nRD to nQ and nQ (reset),	$V_{CC} = 3.0V \text{ to } 3.6V$	C _L = 50pF		9.2		ns
		see Figure 2	4.5)// 5.5)/	C _L = 15pF		4.8		ns
			$V_{CC} = 4.5V \text{ to } 5.5V$	C _L = 50pF		6.3		ns
	t _W	Inputs, $n\overline{A} = low$, see Figure 2	$V_{CC} = 3.0V \text{ to } 3.6V$			5		ns
			V _{CC} = 4.5V to 5.5V			5		ns
		Inputs, nB = high, see Figure 2	$V_{CC} = 3.0V \text{ to } 3.6V$			5		ns
			V _{CC} = 4.5V to 5.5V			5		ns
		Inputs, nRD = low,	V _{CC} = 3.0V to 3.6V			5		ns
Dede - Middle		see Figure 2	V _{CC} = 4.5V to 5.5V			5		ns
Pulse Width		Outputs, nQ= low and	$V_{CC} = 3.0V \text{ to } 3.6V$	$C_{EXT} = 28pF,$		230		ns
			V _{CC} = 4.5V to 5.5V	$R_{EXT} = 2k\Omega$ $C_{EXT} = 0.01\mu F$,		230		ns
			V _{CC} = 3.0V to 3.6V			100		μs
		$nQ = high, C_L = 50pF,$ see Figure 2, 3, 4, 5 (2)	V _{CC} = 4.5V to 5.5V	$R_{EXT} = 10k\Omega$		100		μs
			V _{CC} = 3.0V to 3.6V	$C_{EXT} = 0.1 \mu F$,		1		ms
			V _{CC} = 4.5V to 5.5V	$R_{EXT} = 10k\Omega$		1		ms
			V _{CC} = 3.0V to 3.6V	C _{EXT} = 100pF,		60		ns
Datalana Tima		$n\overline{A}$ to nB , $C_L = 50pF$,	V _{CC} = 4.5V to 5.5V	$R_{EXT} = 1k\Omega$		55		ns
Retrigger Time	t _{RTRIG}	see Figure 3 and Figure 5	V _{CC} = 3.0V to 3.6V	$C_{EXT} = 0.01 \mu F$,		0.5		μs
			V _{CC} = 4.5V to 5.5V	$R_{EXT} = 1k\Omega$		0.5		μs
Power Dissipation Capacitance (3)	C_{PD}	$C_L = 50$ pF, $f_i = 1$ MHz, $V_{IN} = GND$	to V _{CC}			110		pF
External Resistance	D	$V_{CC} = 2.0V$			5			kΩ
External Resistance	R _{EXT}	V _{CC} > 3.0V			1			kΩ
External	<u> </u>	/ _{CC} = 2.0V						pF
Capacitance (4)	C _{EXT}	V _{CC} > 3.0V						pF

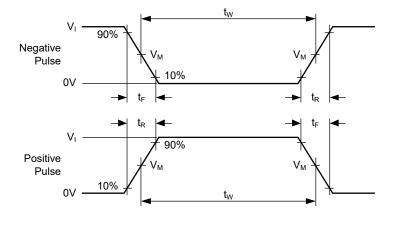
NOTES:

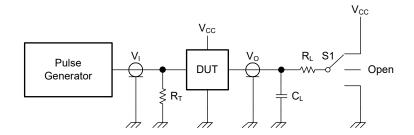
- 1. t_{PD} is the same as t_{PLH} and t_{PHL} .
- 2. For $C_{EXT} \ge 10$ nF, the typical value of the pulse width t_W (µs) = C_{EXT} (nF) × R_{EXT} (k Ω).
- 3. C_{PD} is used to determine the dynamic power dissipation (PD in μW).

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$$

where:

 f_i = input frequency in MHz.


 f_o = output frequency in MHz.


C_L = output load capacitance in pF.

 V_{CC} = supply voltage in Volts.

 $\Sigma(C_L \times V_{CC}^2 \times f_o) = Sum of outputs.$

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions test circuit:

R_L = Load resistance.

 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

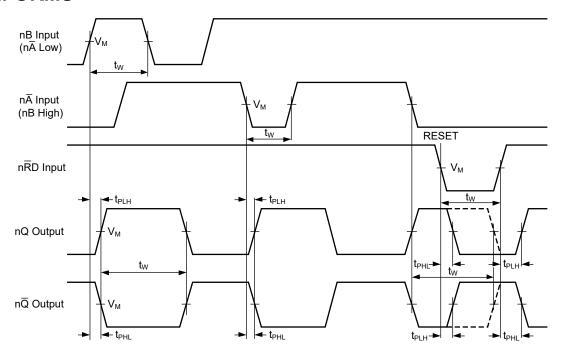
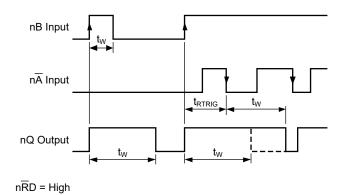

S1 = Test selection switch.

Figure 1. Test Circuit for Measuring Switching Times

Table 1. Test Conditions

INF	TUT	LO	S1 POSITION			
V _I t _R , t _F		C _L R _L		t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
V _{CC}	3.0ns	15pF, 50pF	1kΩ	Open	GND	Vcc

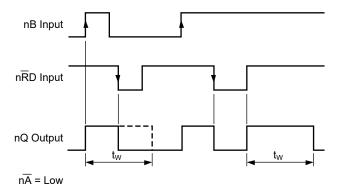
WAVEFORMS


Test conditions are given in Table 1.

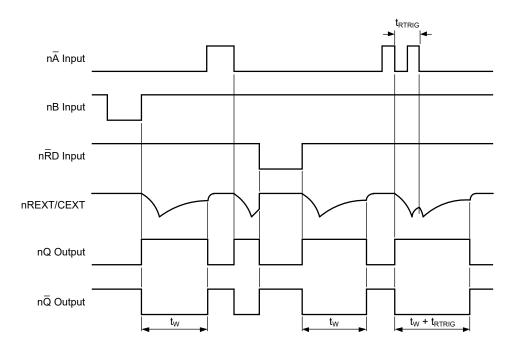
Measurement points are given in Table 2.

Figure 2. Propagation Delay Inputs ($n\overline{A}$, nB and $n\overline{R}D$) to Outputs (nQ and $n\overline{Q}$)

Table 2. Measurement Points

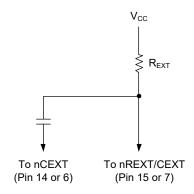

INPUT	OUTPUT
V _M	V_{M}
0.5 × V _{CC}	0.5 × V _{CC}

Test conditions are given in Table 1.

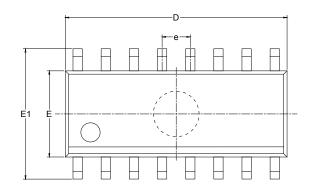

Figure 3. Output Pulse Control Using Retrigger Pulse

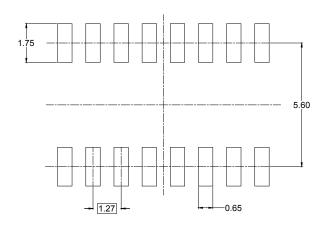
WAVEFORMS (continued)

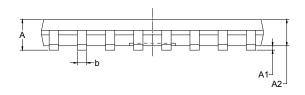
Test conditions are given in Table 1.

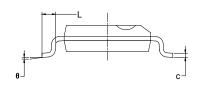

Figure 4. Output Pulse Control Using Reset Input nRD

Test conditions are given in Table 1.

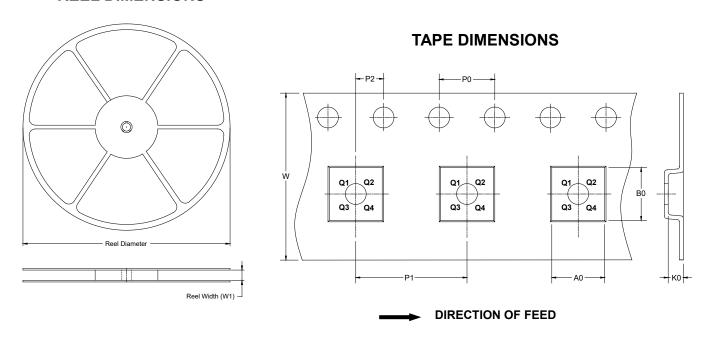

Figure 5. Input and Output Timing


WAVEFORMS (continued)


Figure 6. Timing Component Connections


PACKAGE OUTLINE DIMENSIONS SOIC-16

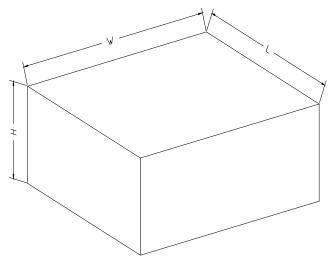
RECOMMENDED LAND PATTERN (Unit: mm)



Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	9.800	10.200	0.386	0.402	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.27 BSC		0.050	BSC	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOIC-16	13"	16.4	6.50	10.30	2.10	4.0	8.0	2.0	16.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
13″	386	280	370	5