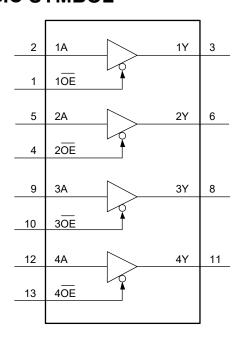
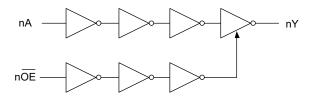
74LVTH125 3.3V, Quad Buffer/Line Driver with 3-State Outputs

GENERAL DESCRIPTION


The 74LVTH125 is a high-performance product with 3-state bus outputs and it is designed for 3.3V V_{CC} operation. The device is organized as a quad buffer with separate output enable (n \overline{OE}) inputs, each controlling one of the 3-state outputs. When n \overline{OE} is low, the device passes data from the nA inputs to the nY outputs. When n \overline{OE} is high, the outputs are in the high-impedance state.

The device combines low static and dynamic power dissipation with high speed and high output drive. The 74LVTH125 bus hold on data inputs eliminates the need for external pull-up/pull-down resistors to hold unused inputs.


FEATURES

- Quad Bus Interface
- 3-State Buffers
- Output Capability: +64mA/-32mA
- TTL Input and Output Switching Levels
- Input and Output Interface Capability to Systems at 5V Supply
- Bus Hold on Data Inputs Eliminates the Need for External Pull-Up/Pull-Down Resistors
- Live Insertion and Extraction Permitted
- Power-Up 3-State
- No Bus Current Loading When Output is Tied to 5V Bus
- -40°C to +125°C Operating Temperature Range
- Available in a Green SOIC-14 Package

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

CONTROL INPUT	INPUT	OUTPUT
nŌĒ	nA	nY
L	L	L
L	Н	Н
Н	X	Z

H = High Voltage Level

L = Low Voltage Level

Z = High-Impedance State

X = Don't Care

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
74LVTH125	SOIC-14	-40°C to +125°C	74LVTH125XS14G/TR	74LVTH125XS14 XXXXX	Tape and Reel, 2500

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS (1)

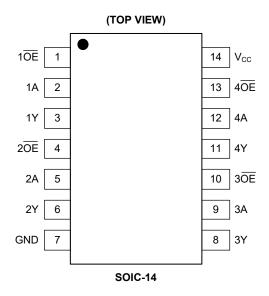
, (20020 : 2 iii) builioiii : 0 (: iii)	
Supply Voltage, V _{CC}	0.5V to 4.6V
Input Voltage, V _I ⁽²⁾	0.5V to 7V
Output Voltage, V _O ⁽²⁾	
Output in 3-State or High-State	0.5V to 7V
Input Clamping Current, I _{IK} (V _I < 0V)	50mA
Output Clamping Current, I _{OK} (V _O < 0V)	50mA
Output Current, I _O	
Output in High-State	64mA
Output in Low-State	128mA
Supply Current, I _{CC}	128mA
Ground Current, I _{GND}	
Junction Temperature (3)	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	8000V
CDM	1000V

RECOMMENDED OPERATING CONDITIONS

RECOMMENDED OPERATING	CONDITIONS
Supply Voltage, V _{CC}	2.7V to 3.6V
Input Voltage, V _I	0V to 5.5V
High-Level Output Current, I _{OH}	32mA
Low-Level Output Current, I _{OL}	64mA
Input Transition Rise and Fall Rate, $\Delta t/\Delta V$	
	10ns/V (MAX)
Operating Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

- 1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.
- 2. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.
- 3. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.


ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

PIN DESCRIPTION

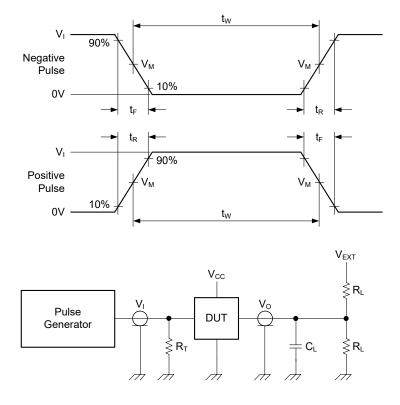
PIN	NAME	FUNCTION			
1, 4, 10, 13	1 OE , 2 OE , 3 OE , 4 OE	Output Enable Inputs (Active Low).			
2, 5, 9, 12	1A, 2A, 3A, 4A	Data Inputs.			
3, 6, 8, 11	1Y, 2Y, 3Y, 4Y	Data Outputs.			
7	GND	Ground.			
14	Vcc	Supply Voltage.			

ELECTRICAL CHARACTERISTICS

(Full = -40°C to +125°C, all typical values are measured at V_{CC} = 3.3V and T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CON	NDITIONS	TEMP	MIN	TYP	MAX	UNITS
Input Clamping Voltage	V _{IK}	$V_{CC} = 2.7V, I_{IK} = -18$	lmA	Full	-1.2	-0.78		V
High-Level Input Voltage	V _{IH}	$V_{CC} = 2.7V \text{ to } 3.6V$		Full	2.0			V
Low-Level Input Voltage	V _{IL}	$V_{CC} = 2.7V \text{ to } 3.6V$		Full			8.0	V
		$V_{CC} = 2.7V \text{ to } 3.6V,$	I _{OH} = -100μA	Full	V _{CC} - 0.05	V _{CC} - 0.001		
High-Level Output Voltage	V _{OH}	V _{CC} = 2.7V, I _{OH} = -8i	mA	Full	2.45	2.60		V
		$V_{CC} = 3.0 \text{V}, I_{OH} = -32$	2mA	Full	2.10	2.65		
		V _{CC} = 2.7V	I _{OL} = 100μA	Full		0.001	0.05	
		V _{CC} - 2.7 V	I _{OL} = 24mA	Full		0.15	0.28	
Low-Level Output Voltage	V _{OL}		I _{OL} = 16mA	Full		0.1	0.18	V
		V _{CC} = 3.0V	I _{OL} = 32mA	Full		0.2	0.36	
			I _{OL} = 64mA	Full		0.4	0.55	
		Control pins, V _{CC} =	3.6V, $V_I = V_{CC}$ or GND	Full		±0.01	±1	
		Control pins, $V_{CC} = 0V$ or 3.6V, $V_1 = 5.5V$		Full		0.01	5	
Input Leakage Current	I _I	Input data pins $^{(1)}$, V_{CC} = 0V or 3.6V, V_I = 5.5V		Full		0.4	5	μΑ
		Input data pins $^{(1)}$, $V_{CC} = 3.6V$, $V_I = V_{CC}$		Full		0.3	3	
		Input data pins $^{(1)}$, V_{CC} = 3.6V, V_{I} = GND		Full	-2	-0.01		
Off-State Output Current		V _{CC} = 3.6V	V _O = 3.0V	Full		0.01	2	
Oil-State Output Current	l _{oz}		V _O = 0.5V	Full	-2	-0.01		μΑ
Output Leakage Current	I _{LO}	Output in high-state $V_0 = 5.5V$, $V_{CC} = 3.0$	OV	Full		1	30	μA
Power-Up/Down Output Current	I _{O_PU/PD}	$V_{CC} \le 1.2V$, $V_0 = 0.5V$ $n\overline{OE} = don't care$	V to V_{CC} , V_I = GND or V_{CC} ,	+25°C		0.01	10	μA
Power-Off Leakage Current	I _{OFF}	V_{CC} = 0V, V_{I} or V_{O} =	0V to 5.5V	Full		0.01	10	μA
		V _{CC} = 3.6V,	Output high	Full		13	40	
Supply Current	I _{CC}	$V_I = GND \text{ or } V_{CC}$	Output low	Full		13	40	μA
		I _O = 0A	Outputs disabled (2)	Full		13	40	
Additional Supply Current (3)	ΔI _{CC}	Per input pin, V _{CC} = V _{CC} - 0.6V, other inp	3.0V to 3.6V, one input at outs at V _{CC} or GND	Full		0.2	200	μA
Input Capacitance	Cı	V _I = 0V or 3.0V		+25°C		6		pF
Output Capacitance	Co	Outputs disabled, V	Outputs disabled, V _O = 0V or 3.0V			9		pF
Bus Hold Low Current	I _{BHL}	$V_{CC} = 3.0V, V_I = 0.8$	V _{CC} = 3.0V, V _I = 0.8V		50	100		μA
Bus Hold High Current	I _{BHH}	$V_{CC} = 3.0V, V_I = 2.0$	V	Full		-130	-75	μA
Bus Hold Low Overdrive Current (4)	I _{BHLO}	Input data pins, V _{CC}	$_{c}$ = 3.6V, V _I = 0V to 3.6V	Full	500	200		μA
Bus Hold High Overdrive Current (4)	I _{BHHO}	Input data pins, V _{CC}	$_{2}$ = 3.6V, V _I = 0V to 3.6V	Full		-280	-500	μΑ

NOTES:


- 1. Unused pins at V_{CC} or GND.
- 2. I_{CC} is measured with outputs pulled to V_{CC} or GND.
- 3. This is the increase in supply current for each input at the specified voltage level other than V_{CC} or GND.
- 4. This is the bus hold overdrive current required to force the input to the opposite logic state.

DYNAMIC CHARACTERISTICS

(For test circuit, see Figure 1. All typical values are measured at V_{CC} = 3.3V and T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIO	ONS	TEMP	MIN	TYP	MAX	UNITS
Low to High Propagation Poley	+	nA to nY, see Figure 2	V _{CC} = 2.7V	+25°C		4.3		ns
Low to High Propagation Delay	t _{PLH}	TIA to ITT, see Figure 2	$V_{CC} = 3.0V \text{ to } 3.6V$	+25°C		4.3		115
High to Low Propagation Delay	+	nA to nY, see Figure 2	V _{CC} = 2.7V	+25°C		3.9		ns
High to Low Propagation Delay	t _{PHL}	TIA to IIT, see Figure 2	V_{CC} = 3.0V to 3.6V	+25°C		3.7		115
Off State to Lligh Drangation Daloy	4	705 to 7V con Figure 2	V _{CC} = 2.7V	+25°C		5.3		
Off-State to High Propagation Delay	t _{PZH}	nOE to nY, see Figure 3	$V_{CC} = 3.0V \text{ to } 3.6V$	+25°C		4.9		ns
Off State to Low Propagation Delay		nOF to nV and Figure 2	V _{CC} = 2.7V	+25°C		5.0		no
Off-State to Low Propagation Delay	t _{PZL}	nOE to nY, see Figure 3	V _{CC} = 3.0V to 3.6V	+25°C		4.9		ns
Lligh to Off State Propagation Daloy	4	705 to 7V con Figure 2	V _{CC} = 2.7V	+25°C		4.9		
High to Off-State Propagation Delay	t _{PHZ}	$n\overline{OE}$ to nY, see Figure 3	$V_{CC} = 3.0V \text{ to } 3.6V$	+25°C		4.6		ns
Low to Off State Propagation Polov		nOF to nV oce Figure 2	V _{CC} = 2.7V	+25°C		5.4		no
Low to Off-State Propagation Delay	t _{PLZ}	nOE to nY, see Figure 3	V _{CC} = 3.0V to 3.6V	+25°C		5.4		ns

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions for test circuit:

R_L = Load resistance.

 C_L = Load capacitance including jig and probe capacitance.

 R_{T} = Termination resistance should be equal to output impedance Z_{O} of the pulse generator.

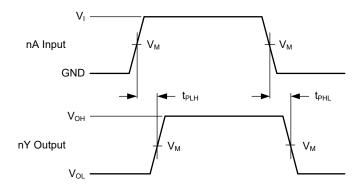
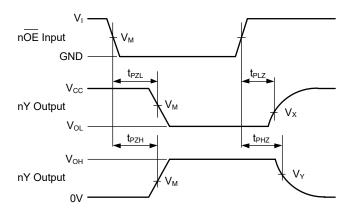

 V_{EXT} = External voltage for measuring switching times.

Figure 1. Test Circuit for Measuring Switching Times

Table 1. Test Conditions

SUPPLY VOLTAGE	INPUT			LO	AD		V_{EXT}		
V _{cc}	Vı	fi	t _W	t _R , t _F	CL	R_L	t _{PHZ} , t _{PZH}	t_{PLZ},t_{PZL}	t _{PLH} , t _{PHL}
2.7V to 3.6V	2.7V	≤ 10MHz	500ns	≤ 2.5ns	50pF	500Ω	GND	6V	Open

WAVEFORMS



Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 2. Input (nA) to Output (nY) Propagation Delays

Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

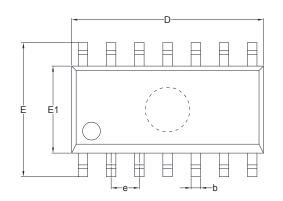
Figure 3. Enable and Disable Times

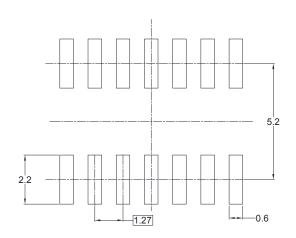
Table 2. Measurement Points

SUPPLY VOLTAGE	INF	PUT	OUTPUT		
Vcc	Vi	V _M	V _M	V _X	V _Y
2.7V to 3.6V	2.7V	1.5V	1.5V	V _{OL} + 0.3V	V _{OH} - 0.3V

3.3V, Quad Buffer/Line Driver with 3-State Outputs

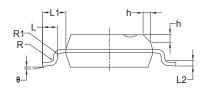
74LVTH125


REVISION HISTORY

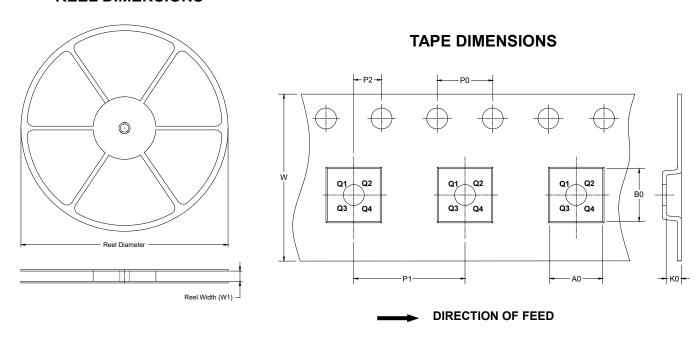

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (APRIL 2021) to REV.A

Page


PACKAGE OUTLINE DIMENSIONS SOIC-14

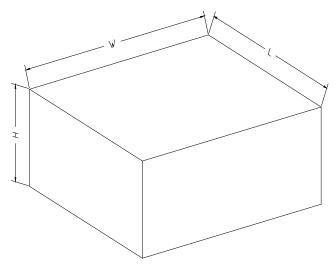
RECOMMENDED LAND PATTERN (Unit: mm)



Symbol	_	nsions meters	Dimer In In	
	MIN	MAX	MIN	MAX
Α	1.35	1.75	0.053	0.069
A1	0.10	0.25	0.004	0.010
A2	1.25	1.65	0.049	0.065
A3	0.55	0.75	0.022	0.030
b	0.36	0.49	0.014	0.019
D	8.53	8.73	0.336	0.344
Е	5.80	6.20	0.228	0.244
E1	3.80	4.00	0.150	0.157
е	1.27	BSC	0.050	BSC
L	0.45	0.80	0.018	0.032
L1	1.04	REF	0.040	REF
L2	0.25	BSC	0.01	BSC
R	0.07		0.003	
R1	0.07		0.003	
h	0.30	0.50	0.012	0.020
θ	0°	8°	0°	8°

TAPE AND REEL INFORMATION

REEL DIMENSIONS


NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOIC-14	13"	16.4	6.60	9.30	2.10	4.0	8.0	2.0	16.0	Q1

TX10000.000

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
13″	386	280	370	5