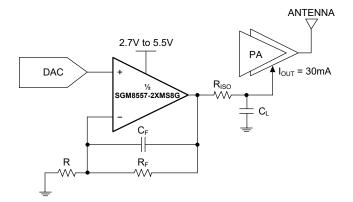
SGM8557-2XMS8G 15MHz, High Output Drive, High Precision, Low Noise Operational Amplifier

GENERAL DESCRIPTION

The dual SGM8557-2XMS8G high output drive CMOS operational amplifier features a peak output current of 235mA, rail-to-rail output capability from a single 2.7V to 5.5V supply. This amplifier exhibits a high slew rate of 7V/µs and a gain-bandwidth product (GBP) of 15MHz.

The SGM8557-2XMS8G offers low input offset voltage, low input offset voltage drift, wide bandwidth and high output drive.

The SGM8557-2XMS8G is available in a Green MSOP-8 package. It operates over an ambient temperature range of -40°C to +125°C.


APPLICATIONS

Portable/Battery-Powered Audio Applications Audio Hands-Free Car Phones (Kits) Laptop/Notebook Computers/TFT Panels Sound Ports/Cards Set-Top Boxes Digital-to-Analog Converter Buffers Transformer/Line Drivers Motor Drivers

FEATURES

- 235mA Output Drive Capability
- Rail-to-Rail Output
- Low Input Offset Voltage: 5µV (MAX)
- Low Input Offset Voltage Drift: 20nV/°C (TYP)
- Low Noise: 30nV/√Hz at 1kHz
- Over-Temperature Protection
- Supply Voltage Range: 2.7V to 5.5V
- Quiescent Supply Current: 2.4mA (TYP)
- Gain-Bandwidth Product: 15MHz
- High Slew Rate: 7V/µs
- High Open-Loop Gain (R_L = 2kΩ): 135dB
- Power Supply Rejection Ratio: 121dB
- No Phase Reversal for Overdriven Inputs
- Available in a Green MSOP-8 Package

TYPICAL OPERATING CIRCUIT

SGM8557-2XMS8G

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM8557-2XMS8G	MSOP-8	-40°C to +125°C	SGM8557-2XMS8G/TR	SGM85572 XMS8 XXXXX	Tape and Reel, 4000

MARKING INFORMATION

NOTE: XXXXX = Trace Code and Vendor Code.

XXXXX

Vendor Code
Trace Code

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

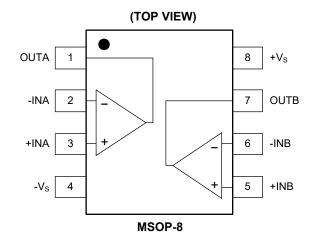
Supply Voltage, +V _S to -V _S	6V
All Other Pins (-V _S) - 0.	3V to (+V _S) + 0.3V
Package Thermal Resistance	
MSOP-8, θ _{JA}	162°C/W
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	7000V
CDM	1000V

RECOMMENDED OPERATING CONDITIONS

Operating Temperature Range40)°C to +125°C
Operating Supply Voltage Range	2.7V to 5.5V

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.


ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

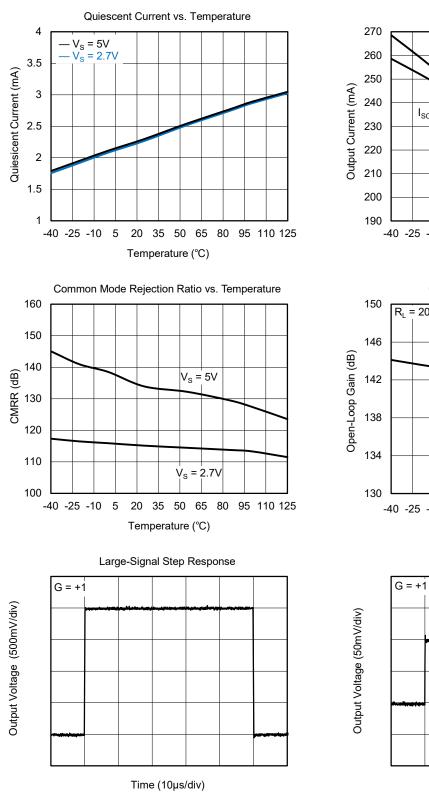
PIN CONFIGURATION

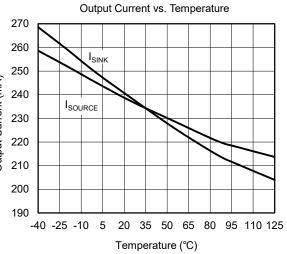
ELECTRICAL CHARACTERISTICS

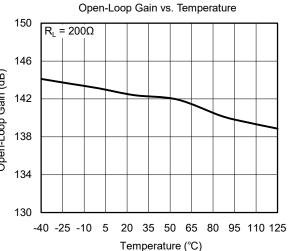
(V_S = 2.7V to 5V, -V_S = 0V, V_{CM} = V_S/2, V_{OUT} = V_S/2, R_L connected to V_S/2, Full = -40°C to +125°C, typical values are at T_A = +25°C, unless otherwise noted.)

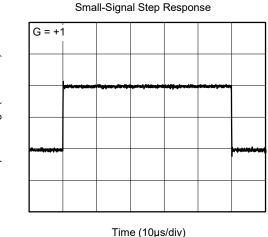
PARAMETER	CONDITIONS		TEMP	MIN	TYP	MAX	UNITS
Input Characteristics							
	V _S = 2.7V		+25℃		2.5	5	
Input Offset Voltage (Vos)	V _S = 5V		+25°C		3	5	μV
	V _S = 2.7V		+25°C		25	126	
Input Offset Voltage Drift ($\Delta V_{OS}/\Delta T$)	V _S = 5V		+25℃		20	130	nV/°C
Input Bias Current (I _B)	V _S = 5V		+25℃		320	500	pА
Input Offset Current (I _{os})	V _S = 5V		+25°C		640	1000	pА
Input Common Mode Voltage Range (V _{CM})		Full	(-V _s) - 0.1		(+V _s) + 0.1	V	
			+25℃	106	115		
Common Mode Rejection Ratio (CMRR)	$(-V_{\rm S}) - 0.1V < V_{\rm CM} < (+V_{\rm S}) + 0.1V$	/	Full	102			dB
			+25℃	112	130		
	V _s = 2.7V,	R∟ = 2kΩ	Full	110			
	$(-V_{\rm S}) + 0.2V < V_{\rm OUT} < (+V_{\rm S}) - 0.2V$		+25°C	110	130		
		R _L = 200Ω	Full	107			15
Open-Loop Voltage Gain (A _{OL})	$V_{\rm S}$ = 5V, (-V_{\rm S}) + 0.2V < V_{\rm OUT} < (+V _S) - 0.2V		+25°C	115	135		- dB -
		$R_L = 2k\Omega$	Full	112			
		R _L = 200Ω	+25°C	110	135		
			Full	108			
Output Characteristics				II			
		R _L = 32Ω	+25°C		220	300	-
			Full			370	
		R _L = 200Ω	+25°C		40	60	
			Full			72	
	V _s = 2.7V	$R_L = 2k\Omega$	+25°C		4	10	
			Full			11	
			+25°C		65	95	1
		I _{OUT} = 10mA	Full			115	
Output Voltage Swing from Rail		D 000	+25°C		360	485	mV
		R _L = 32Ω	Full			580	-
			+25°C		65	95	
		R _L = 200Ω	Full			115	
	V _S = 5V		+25°C		7	15	
		$R_L = 2k\Omega$	Full			18	-
			+25°C		55	82	
		I _{OUT} = 10mA	Full			98	
			+25°C	92	120		
	V _S = 2.7V		Full	64			1 .
Output Short-Circuit Current (I _{SC})				182	235		- mA
	$V_{\rm S} = 5V$		+25°C Full	148		1	

ELECTRICAL CHARACTERISTICS (continued)

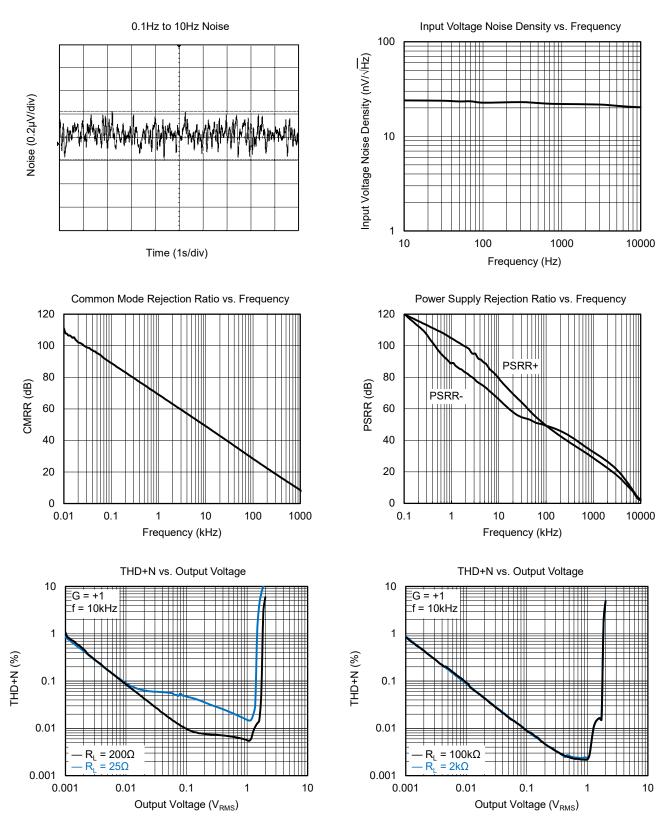

(V_S = 2.7V to 5V, -V_S = 0V, V_{CM} = V_S/2, V_{OUT} = V_S/2, R_L connected to V_S/2, Full = -40°C to +125°C, typical values are at T_A = +25°C, unless otherwise noted.)

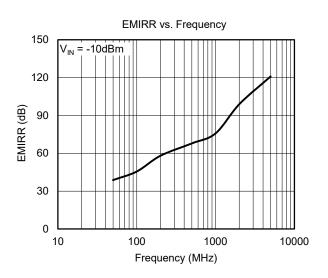

PARAMETER	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
Power Supply						•
Specified Voltage Range (V _S)		Full	2.7		5.5	V
Power Supply Dejection Datio (DSDD)		+25°C	102	121		dD
Power Supply Rejection Ratio (PSRR)		Full	94			dB
Quiescent Current (L)		+25°C		2.4	2.9	- mA
Quiescent Current (I _Q)	I _{OUT} = 0mA	Full			3.7	
Frequency Response						
Gain-Bandwidth Product	$R_{L} = 10k\Omega, C_{L} = 100pF$	+25°C		15		MHz
Slew Rate	$G = +1, V_{OUT} = 2V_{P-P}$	+25°C		7		V/µs
Total Harmonic Distortion + Noise $V_s = 5V, R_L = 32\Omega, f = 10kHz,$ BW = 10Hz to 90kHz, V _{OUT} = 2V _{P-P} , A _{VCL} = 1V/V		+25°C		0.017		%
Input Capacitance		+25°C		20		pF
Channel-to-Channel Isolation	$f = 1kHz$, $R_L = 100k\Omega$	+25°C		-125		dB
Capacitive-Load Stability	A _{VCL} = 1V/V, no sustained oscillations	+25°C		780		pF
Noise						
Input Voltage Noise	f = 0.1Hz to 10Hz	+25°C		0.5		$\mu V_{P \cdot P}$
Innut Valtage Naise Density	f = 1kHz	+25°C		30		
Input Voltage Noise Density	f = 10kHz	+25°C		28		nV/√Hz

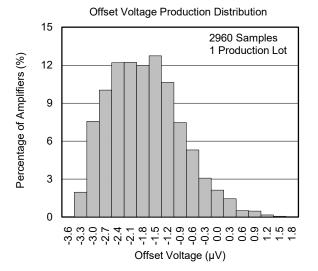

SGM8557-2XMS8G

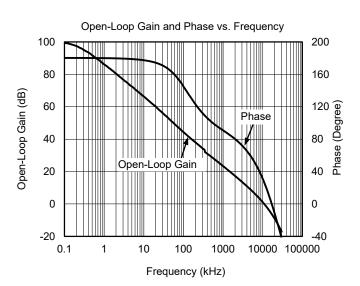

TYPICAL PERFORMANCE CHARACTERISTICS

At T_A = +25°C, V_S = 5V, unless otherwise noted.




TYPICAL PERFORMANCE CHARACTERISTICS (continued)


At T_A = +25°C, V_S = 5V, unless otherwise noted.



TYPICAL PERFORMANCE CHARACTERISTICS (continued)

At T_A = +25°C, V_S = 5V, unless otherwise noted.

APPLICATION INFORMATION

60mW Single-Supply Stereo Headphone Driver

The SGM8557-2XMS8G can be used as a single-supply, stereo headphone driver. The circuit shown in Figure 1 can deliver 60mW per channel with 1% distortion from a single 5V supply.

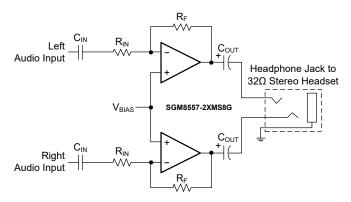


Figure 1. Circuit Example: A Single-Supply, Stereo Headphone Driver

The input capacitor (C_{IN}), in conjunction with R_{IN} , forms a high-pass filter that removes the DC bias from the incoming signal. The -3dB point of the high-pass filter is given by:

$$f_{-3dB} = \frac{1}{2\pi R_{IN}C_{IN}}$$
(1)

Choose gain-setting resistors R_{IN} and R_F according to the amount of desired gain, while keeping in mind the maximum output amplitude. The output coupling capacitor (C_{OUT}) blocks the DC component of the amplifier output and prevents DC current flowing to the load. The output capacitor and the load impedance form a high-pass filer with the -3dB point determined by:

$$f_{-3dB} = \frac{1}{2\pi R_L C_{OUT}}$$
(2)

For a 32 load, a 100 μF aluminum electrolytic capacitor gives a low-frequency pole at 50 Hz.

Bridge Amplifier

The circuit shown in Figure 2 uses an SGM8557-2XMS8G to implement a 3V, 200mW amplifier suitable for use in size-constrained applications. This configuration eliminates the need for the large coupling capacitor required by the single operational amplifier speaker driver when single-supply operation is necessary. Voltage gain is set to 10V/V; however, it can be changed by adjusting the 82k Ω resistor value.

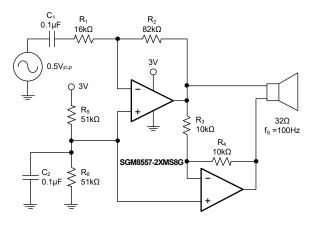
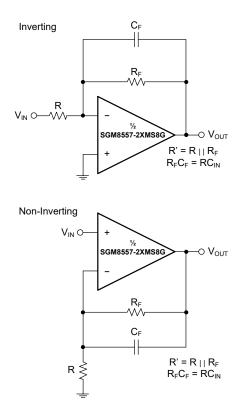


Figure 2. SGM8557-2XMS8G Bridge Amplifier for 200mW at 3V

APPLICATIONS INFORMATION (continued)


Input Capacitance

One consequence of the parallel-connected differential input stages is a relatively large input capacitance C_{IN} (20pF TYP). This introduces a pole at frequency $(2\pi R'C_{IN})^{-1}$, where R' is the parallel combination of the gain-setting resistors for the inverting or non-inverting amplifier configuration (Figure 3). If the pole frequency is less than or comparable to the unity-gain bandwidth (15MHz), the phase margin is reduced, and the amplifier exhibits degraded AC performance through either ringing in the step response or sustained oscillations. The pole frequency is 10MHz when R' = 2k\Omega. To maximize stability, R' << 2k\Omega is recommended.

To improve step response when R' > $2k\Omega$, connect small capacitor C_F between the inverting input and output. Choose C_F as follows:

$$C_{F} = 8(R/R_{F}) [pF]$$
 (3)

where R_{F} is the feedback resistor and R is the gain-setting resistor (Figure 3).

Driving Capacitive Loads

The SGM8557-2XMS8G has a high tolerance for capacitive loads. It is stable with capacitive loads up to 780pF. Figure 4 shows the transient response with capacitive loads (780pF), with and without the addition of an isolation resistor in series with the output. Figure 5 shows a typical non-inverting capacitive-load-driving circuit in the unity-gain configuration.

The resistor improves the circuit's phase margin by isolating the load capacitor from the operational amplifier's output.

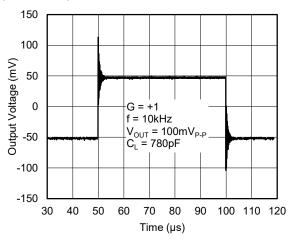


Figure 4. Small-Signal Transient Response with Capacitive Load

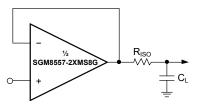
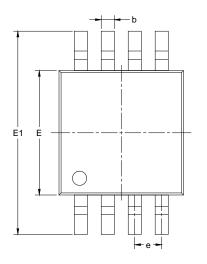
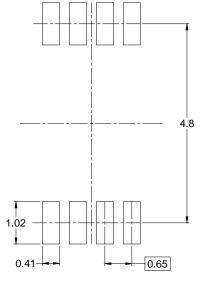


Figure 5. Capacitive-Load-Driving Circuit

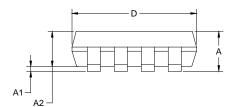
Power Supplies and Layout

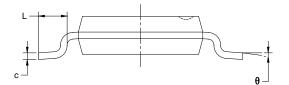
The SGM8557-2XMS8G can operate from a single 2.7V to 5.5V supply or from dual $\pm 1.35V$ to $\pm 2.75V$ supplies. For single-supply operation, bypass the power supply with a 0.1µF ceramic capacitor. For dual-supply operation, bypass each supply to ground. Good layout improves performance by decreasing the amount of stray capacitance at the operational amplifier's inputs and outputs. Decrease stray capacitance by placing external components close to the operational amplifier's pins, minimizing trace and lead lengths.


REVISION HISTORY

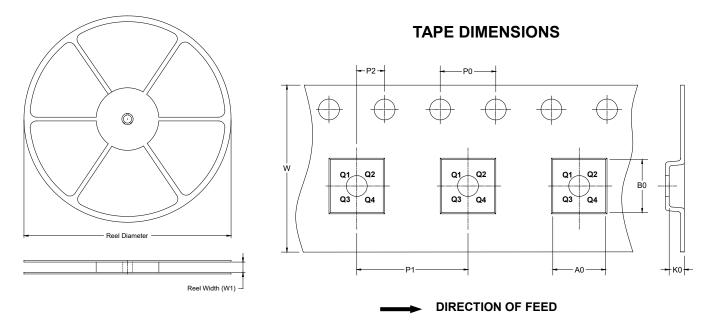

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

OCTOBER 2021 – REV.A to REV.A.1	Page
Updated Marking Information section	2
Changes from Original (SEPTEMBER 2021) to REV.A	Page
Changed from product preview to production data	All


PACKAGE OUTLINE DIMENSIONS


MSOP-8

RECOMMENDED LAND PATTERN (Unit: mm)

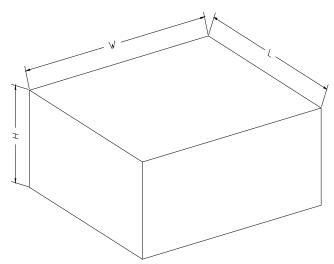

Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.250	0.380	0.010	0.015	
с	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
E	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187	0.199	
е	0.650	BSC	0.026	BSC	
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	

NOTES:

Body dimensions do not include mode flash or protrusion.
 This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
MSOP-8	13″	12.4	5.20	3.30	1.50	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
13″	386	280	370	5	DD0002