Over-Voltage Protection Load Switch with Surge Protection

FEATURES

- Highly reliable 1.3mm x 1.8mm FCQFN-12 package
- Surge protection
 - > IEC 61000-4-5: > 120V
- Integrated low R_{dson} nFET switch: typical 27mΩ
- 5A continuous current capability
- Default Over-Voltage Protection (OVP) threshold
 - > AW32901: 5.95V
 - > AW32902: 6.2V
 - > AW32905: 6.8V
 - AW32909: 9.98V
 - > AW32910: 10.5V
 - > AW32912: 14V
- OVP threshold adjustable range: 4V to 20V
- Input system ESD protection
 - ➤ IEC 61000-4-2 Contact discharge: ±8kV
 - IEC 61000-4-2 Air gap discharge: ±15kV
- Input maximum voltage rating: 29V_{DC}
- Fast turn-off response: typical 50ns
- Over-Temperature Protection (OTP)
- Under-Voltage Lockout (UVLO)

APPLICATIONS

- Smartphones
- Tablets
- Charging Ports

GENERAL DESCRIPTION

The AW329xx family OVP load switch features surge protection, an internal clamp circuit protects the device from surge voltages up to 120V.

The AW329xx features an ultra-low $27m\Omega$ (typ.) R_{dson} nFET load switch. When input voltage exceeds the OVP threshold, the switch is turned off very fast to prevent damage to the protected downstream devices. The IN pin is capable of withstanding fault voltages up to $29V_{\text{DC}}.$

The default OVP threshold is 5.95V (AW32901), 6.2V (AW32902), 6.8V (AW32905), 9.98V (AW32909), 10.5V (AW32910) and 14V (AW32912), the OVP threshold can be adjusted from 4V to 20V through external OVLO pin.

The device features an open-drain output \overline{ACOK} , when $V_{IN_UVLO} < V_{IN} < V_{IN_OVLO}$ and the switch is on, \overline{ACOK} will be driven low to indicate a good power input, otherwise it is high impedance.

This device features over-temperature protection that prevents itself from thermal damaging.

The AW329xx is available in a RoHS compliant $1.3 \text{mm} \times 1.8 \text{mm}$ FCQFN-12 package.

TYPICAL APPLICATION CIRCUIT

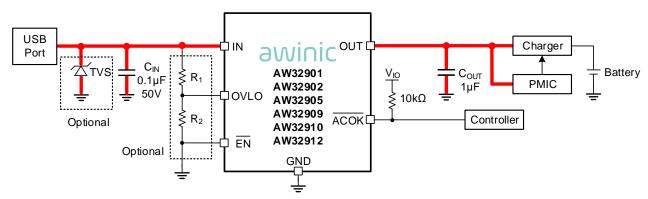


Figure 1 AW329XX typical application circuit

R₁ and R₂ are used for OVP threshold adjustment, to use default OVP threshold, connect OVLO to ground.

All the trademarks mentioned in the document are the property of their owners.

4

DEVICE COMPARISON TABLE

Davisa	V _{IN_OVLO} (V)					
Device	Condition	Min.	Тур.	Max.	V _{IN_OVLO} hysteresis (mV)	
AW32901	V _{IN} rising	5.83	5.95	6.07	130	
AW32902	V _{IN} rising	6.08	6.20	6.32	130	
AW32905	V _{IN} rising	6.66	6.80	6.94	140	
AW32909	V _{IN} rising	9.78	9.98	10.18	210	
AW32910	V _{IN} rising	10.29	10.50	10.71	210	
AW32912	V _{IN} rising	13.7	14.0	14.3	280	

PIN CONFIGURATION AND TOP MARK

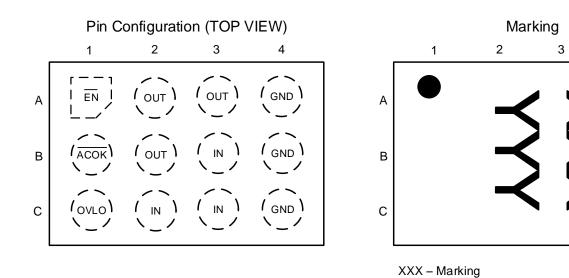


Figure 2 Pin Configuration and Top Mark

PIN DEFINITION

Pin	Name	Description	
A1	ĒΝ	Enable pin, active low	
B1	ACOK	Power good flag, active-low, open-drain	
C1	OVLO	OVP threshold adjustment pin	
C2, C3, B3	IN	Switch input and device power supply	
A2, A3, B2	OUT	Switch output	
A4, B4, C4	GND	Device ground	

YYY - Production tracking code

FUNCTIONAL BLOCK DIAGRAM

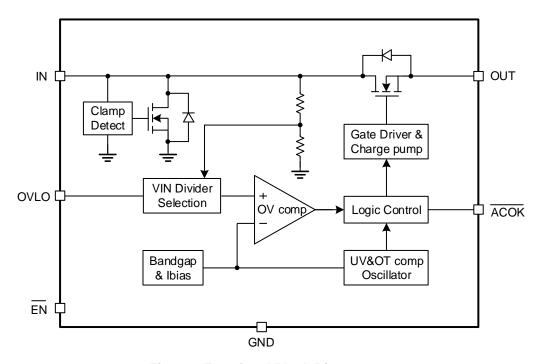


Figure 3 Functional Block Diagram

TYPICAL APPLICATION CIRCUITS

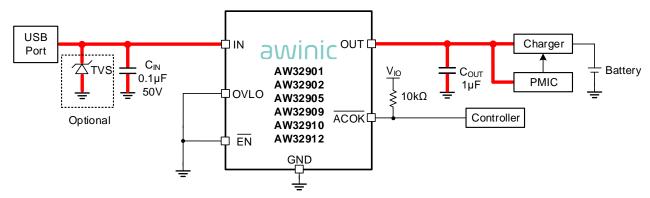
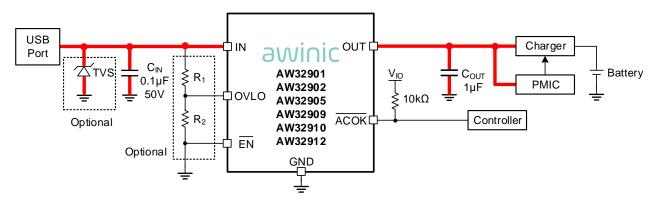
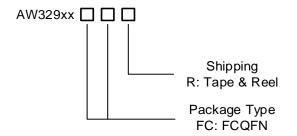


Figure 4 AW329XX typical application circuit(using default OVP threshold)




Figure 5 AW329XX typical application circuit(using external resistors set OVP threshold)

Notice for Typical Application Circuits:

- 1. If VBUS is required to pass surge voltage greater than 120V, external TVS is needed, the maximum clamping voltage of the TVS should be below 34V.
- 2. When the default OVP threshold is used, connect OVLO pin to GND directly or through a 0Ω resistor. OVLO pin cannot be left floating.
- 3. If R₁ and R₂ are used to adjust the OVP threshold, it is better to use 1% precision resistors to improve the OVP threshold precision.
- 4. If ACOK is not used, it can be left floating, or short to GND.
- 5. $C_{IN} = 0.1 \mu F$ is recommended for typical application, larger C_{IN} is also acceptable. The rated voltage of C_{IN} should be larger than the TVS maximum clamping voltage, if no TVS is applied and only AW329XX is used, the rated voltage of C_{IN} should be 50V.
- C_{OUT} = 1μF is recommended for typical application, larger C_{OUT} is also acceptable. The rated voltage of C_{OUT} should be larger than the OVP threshold. For example, if the OVP threshold is 6.8V, the rated voltage of C_{OUT} should be 10V or higher.

ORDERING INFORMATION

Part Number	Temperature	Package	Marking	Moisture Sensitivity Level	Environmental Information	Delivery Form
AW32901FCR	-40°C – 85°C	1.3mm × 1.8mm × 0.55mm FCQFN-12	NV9	MSL1	ROHS+HF	Tape and Reel 3000pcs/Reel
AW32902FCR	-40°C – 85°C	1.3mm × 1.8mm × 0.55mm FCQFN-12	OWM	MSL1	ROHS+HF	Tape and Reel 3000pcs/Reel
AW32905FCR	-40°C – 85°C	1.3mm × 1.8mm × 0.55mm FCQFN-12	RZR	MSL1	ROHS+HF	Tape and Reel 3000pcs/Reel
AW32909FCR	-40°C – 85°C	1.3mm × 1.8mm × 0.55mm FCQFN-12	V5B	MSL1	ROHS+HF	Tape and Reel 3000pcs/Reel
AW32910FCR	-40°C – 85°C	1.3mm × 1.8mm × 0.55mm FCQFN-12	N9V	MSL1	ROHS+HF	Tape and Reel 3000pcs/Reel
AW32912FCR	-40°C – 85°C	1.3mm × 1.8mm × 0.55mm FCQFN-12	PBN	MSL1	ROHS+HF	Tape and Reel 3000pcs/Reel

ABSOLUTE MAXIMUM RATINGS (NOTE 1)

Symbol	Parameter	Condition	Min.	Max.	Unit
Vin	Input voltage		-0.3	29	V
Vout	Output voltage		-0.3	See(NOTE 2)	V
Vovlo	OVLO voltage		-0.3	6	V
V _{ACOK}	ACOK voltage		-0.3	6	V
$V_{\overline{EN}}$	EN voltage		-0.3	6	V
Isw	Continuous current of switch IN-OUT(NOTE 3)	Continuous current on IN and OUT pin		5	Α
I PEAK	Peak current	Peak input and output current on IN and OUT pin(10ms)		8	Α
IDIODE	Continuous diode current	Continuous forward current through the nFET body diode		1.5	Α
T _A	Ambient temperature		-40	85	°C
TJ	Junction temperature		-40	150	°C
Tstg	Storage temperature		-65	150	°C
T _{LEAD}	Soldering temperature	At leads, 10 seconds		260	°C
Surge	Input surge protection	IEC61000-4-5 test with 2Ω equivalent series resistance	120		V

NOTE1: Conditions out of those ranges listed in "absolute maximum ratings" may cause permanent damages to the device. In spite of the limits above, functional operation conditions of the device should within the ranges listed in "recommended operating conditions". Exposure to absolute-maximum-rated conditions for prolonged periods may affect device reliability.

NOTE2: 29V or V_{IN}+0.3V, whichever is smaller.

NOTE3: Limited by thermal design.

THERMAL INFORMATION

Symbol	Parameter	Condition	Value	Unit
$R_{ heta JA}$	Thermal resistance from junction to ambient (NOTE 1)	In free air	65	°C/W

NOTE1: Thermal resistance from junction to ambient is highly dependent on PCB layout.

ESD AND LATCH-UP RATINGS

Symbol	Parameter	Condition	Value	Unit
	IEC61000-4-2 system ESD on	Contact discharge	±8	kV
	IN pin	Air gap discharge	±15	kV
V _{ESD}	Human Body Model	All pins, per MIL-STD-883J Method 3015.9	±2	kV
	Charged Device Model	All pins, per ESDA/JEDEC JS-002-2014	±1	kV
	Machine Model	All pins, per JESD22-A115C	±200	V
I _{Latch-up}	Latch-up	All pins, per JESD78D, I Trigger	±800	mA

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{IN}	Input DC voltage	3		28	٧
C _{IN}	Input capacitance		0.1		μF
Соит	Output load capacitance		1		μF

ELECTRICAL CHARACTERISTICS

 T_A = -40°C to 85°C unless otherwise noted. Typical values are guaranteed for V_{IN} = 5V, C_{IN} = 0.1 μ F, I_{IN} ≤ 5A and T_A = 25°C.

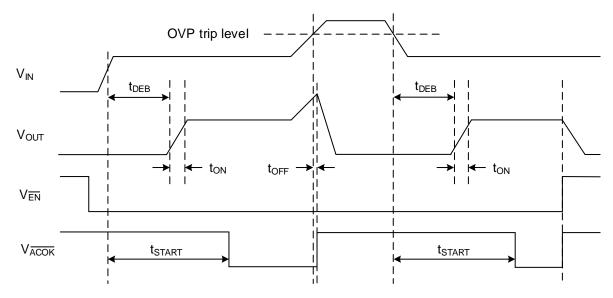
Symbol	Description	Test Conditions		Min.	Тур.	Max.	Units
V _{IN_CLAMP}	Input clamp voltage	I _{IN} = 10mA	I _{IN} = 10mA		30.8		V
R _{dson}	Switch on resistance	V _{IN} = 5V, I _{OUT} :	= 1A, T _A = 25°C		27	37	mΩ
IQ	Input quiescent current	VIN = 5V, VOVLO	0=0V,I _{OUT} = 0A		65	130	μA
lin_ovlo	Input current at over- voltage condition	VIN = 5V, VOVLO	0=3V,Vout = 0V		60	120	μA
Vovlo_th	OVLO set threshold			1.16	1.20	1.24	V
V _{OVLO_RNG}	OVP threshold adjustable range			4		20	V
Varia	External OVLO select	OVLO rising		0.19	0.26	0.33	V
Vovlo_sel	threshold	Hysteresis			0.06		V
lovlo	OVLO pin leakage current	Vovlo=Vovlo_th		-0.2		0.2	μA
Protection	Protection						
		AW32901	V _{IN} rising	5.83	5.95	6.07	
		AW32901	Hysteresis		0.13		
		AW32902	V _{IN} rising	6.08	6.20	6.32	
		AVV32902	Hysteresis		0.13		
		AW32905	V _{IN} rising	6.66	6.80	6.94	
Viv. ovi o	OVP trip level	AVV32903	Hysteresis		0.14		
Vin_ovlo	OVF (rip level	AW32909	V _{IN} rising	9.78	9.98	10.18	V
		AVV32909	Hysteresis		0.21		
		AW32910	V _{IN} rising	10.29	10.50	10.71	
		AVV32310	Hysteresis		0.21		
		AW32912	V _{IN} rising	13.7	14.0	14.3	
		70002312	Hysteresis		0.28		

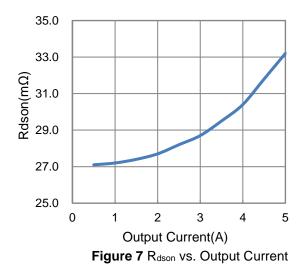
ELECTRICAL CHARACTERISTICS (CONTINUED)

 T_A = -40°C to 85°C unless otherwise noted. Typical values are guaranteed for V_{IN} = 5V, C_{IN} = 0.1 μ F, I_{IN} ≤ 5A and T_A = 25°C.

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units
Protection(c	continued)					
V	LIV/I O trip lovel	V _{IN} rising		2.9	3.0	V
V _{IN_UVLO}	UVLO trip level	Hysteresis		0.1		V
T_{SDN}	Shutdown temperature			150		°C
T _{SDN_HYS}	Shutdown temperature hysteresis			20		°C
RDCHG	Output discharge resistance	Vout=7V,Vovlo=3V		50		Ω
Digital Logic	cal Interface					
Vol	ACOK output low voltage	I _{SINK} =1mA			0.4	V
I _{LEAK_ACOK}	ACOK leakage current	V _{IO} =5V, ACOK de-asserted	-0.5		0.5	μA
V _{IH}	EN input high voltage		1.2			V
VIL	EN input low voltage				0.5	V
I _{LEAK_EN}	EN leakage current	V _{EN} = 5V	0		2	μA
Timing Char	racteristics (Figure 6)					
t _{DEB}	Debounce time	From V _{IN} > V _{IN_UVLO} to 10% V _{OUT}		15		ms
t start	Start-up time	From $V_{IN} > V_{IN_UVLO}$ to \overline{ACOK} low		30		ms
ton	Switch turn-on time	$R_L = 100\Omega, C_L = 22\mu F, V_{OUT}$ from 10% V_{IN} to 90% V_{IN}		2		ms
toff	Switch turn-off time	$C_L = 0\mu F$, $R_L = 100\Omega$, $V_{IN} > V_{IN_OVLO}$ to V_{OUT} stop rising, V_{IN} rise at $10V/\mu s$		50		ns

TIMING DIAGRAM




Figure 6 Timing diagram

TYPICAL CHARACTERISTICS

Table 1 Table of Figures

INDEX	Figure No
R _{dson} vs. Output Current	FIGURE 7
R _{dson} vs. Temp. (I _{OUT} = 1A)	FIGURE 8
R _{dson} vs. Input Voltage (I _{OUT} = 1A)	FIGURE 9
Input Supply Current vs. Supply Voltage	FIGURE 10
Normalized Internal OVP Threshold vs. Temp.	FIGURE 11
OVLO set threshold vs. Temp.	FIGURE 12
Power-up ($C_{OUT} = 1\mu F$, 100mA load)	FIGURE 13
Power-up ($C_{OUT} = 100\mu F$, 100mA load)	FIGURE 14
OVP Response (AW32905)	FIGURE 15
130V Surge Response(AW32905)	FIGURE 16

 $V_{IN}=5V,\ V_{\overline{EN}}\ =0V,\ V_{OVLO}=0V,\ C_{IN}=0.1\mu F,\ C_{OUT}=1\mu F,\ and\ T_A=25^{\circ}C\ unless\ otherwise\ specified.$

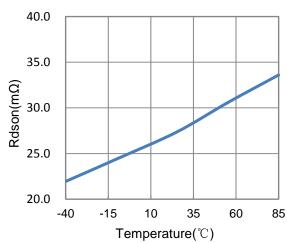


Figure 8 R_{dson} vs. Temp. (I_{OUT} = 1A)

TYPICAL CHARACTERISTICS (CONTINUED)

 V_{IN} = 5V, $V_{\overline{FN}}$ = 0V, V_{OVLO} = 0V, C_{IN} = 0.1 μ F, C_{OUT} = 1 μ F, and T_A = 25°C unless otherwise specified.

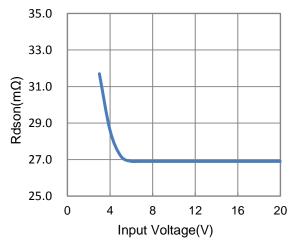


Figure 9 Rdson vs. Input Voltage (IOUT = 1A)

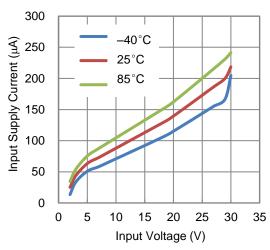


Figure 10 Input Supply Current vs. Supply Voltage

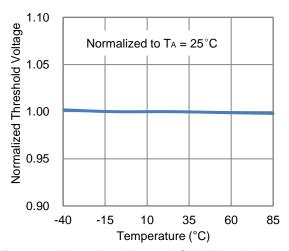


Figure 11 Normalized Internal OVP Threshold vs. Temp.

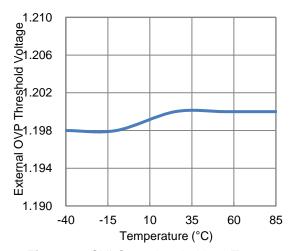


Figure 12 OVLO set threshold vs. Temp.

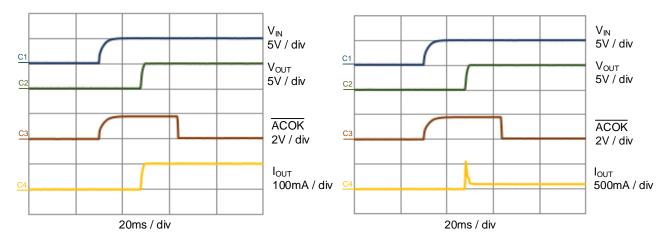


Figure 13 Power-up ($C_{OUT} = 1\mu F$, 100mA load).

Figure 14 Power-up ($C_{OUT} = 100 \mu F$, 100mA load)

TYPICAL CHARACTERISTICS (CONTINUED)

 $V_{IN}=5V,\ V_{\overline{EN}}\ =0V,\ V_{OVLO}=0V,\ C_{IN}=0.1\mu F,\ C_{OUT}=1\mu F,\ and\ T_A=25^{\circ}C\ unless\ otherwise\ specified.$

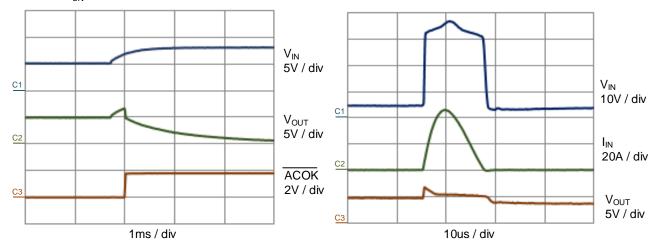


Figure 15 OVP Response (AW32905)

Figure 16 130V Surge Response (AW32905)

Sep. 2018 V1.1

FUNCTIONAL DESCRIPTION

Device Operation

If the AW329xx is enabled and the input voltage is between UVLO and OVP threshold, the internal charge pump begins to work after debounce time, the gate of the nFET switch will be slowly charged high till the switch is fully on. \overline{ACOK} will be driven low about 30ms after V_{IN} valid, indicating the switch is on with a good power input. If the input voltage exceeds the OVP trip level, the switch will be turned off in about 50ns. If \overline{EN} is pulled high, or input voltage falls below UVLO threshold, or over-temperature happens, the switch will also be turned off.

Surge Protection

The AW329xx integrates a clamp circuit to suppress input surge voltage. For surge voltages between V_{IN_OVLO} and V_{IN_CLAMP} , the switch will be turned off but the clamp circuit will not work. For surge voltages greater than V_{IN_CLAMP} , the internal clamp circuit will detect surge voltage level and discharge the surge energy to ground. The device can suppress surge voltages up to 120V.

Over-Voltage Protection

If the input voltage exceeds the OVP rising trip level, the switch will be turned off in about 50ns. The switch will remain off until V_{IN} falls below the OVP falling trip level.

OVP Threshold Adjustment

If the default OVP threshold is used, OVLO pin must be grounded. If OVLO pin is not grounded, and by connecting external resistor divider to OVLO pin as shown in the typical application circuit, between IN and GND, the OVP threshold can be adjusted as following:

$$V_{IN_OVLO} = \frac{R_1 + R_2}{R_2} V_{OVLO_TH}$$

For example, if we select $R_1 = 1M\Omega$ and $R_2 = 100k\Omega$, then the new OVP threshold calculated from the above formula is 13.2V. The OVP threshold adjustment range is from 4V to 20V. When the OVLO pin voltage V_{OVLO} exceeds $V_{\text{OVLO}_\text{SEL}}$ (0.26V typical), V_{OVLO} is compared with the reference voltage $V_{\text{OVLO}_\text{TH}}$ (1.2V typical) to judge whether input supply is over-voltage.

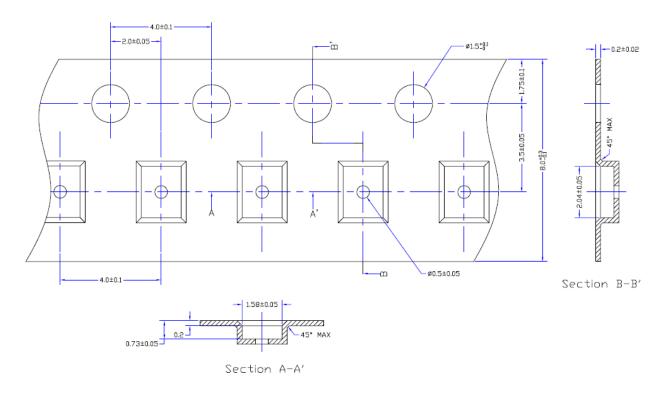
ACOK Output

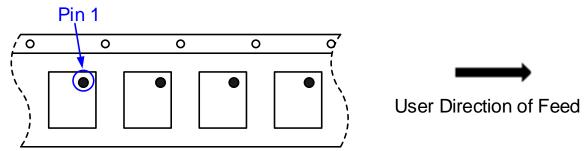
The device features an open-drain output \overline{ACOK} , it should be connected to the system I/O rail through a pull-up resistor. If the device is enabled and $V_{IN_UVLO} < V_{IN} < V_{IN_OVLO}$, \overline{ACOK} will be driven low indicating the switch is on with a good power input. If OVP, UVLO, or OT occurs, or \overline{EN} is pulled high, the switch will be turned off and \overline{ACOK} will be pulled high.

USB On-The-Go (OTG) Operation

If $V_{IN} = 0V$ and OUT is supplied by OTG voltage, the body diode of the load switch conducts current from OUT to IN and the voltage drop from OUT to IN is approximately 0.7V. When $V_{IN} > V_{IN_UVLO}$, internal charge pump begins to open the load switch after debounce time (about 15ms). After switch is fully on, current is supplied through switch channel and the voltage drop from OUT to IN is minimum.

Sep. 2018 V1.1

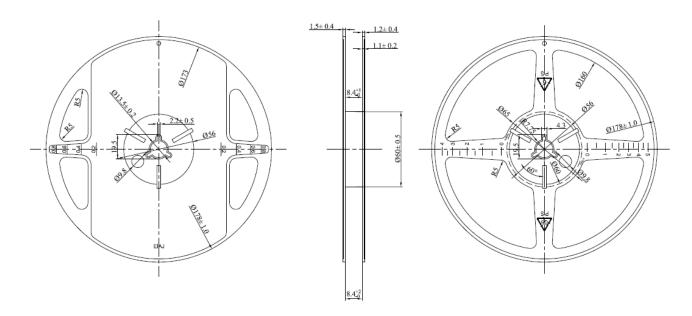

PCB LAYOUT CONSIDERATION


To make fully use of the performance of AW329XX, the guidelines below should be followed.

- 1. All the peripherals should be placed as close to the device as possible. Place the input capacitor C_{IN} on the top layer (same layer as the AW329XX) and close to IN pin, and place the output capacitor C_{OUT} on the top layer (same layer as the AW329XX) and close to OUT pin.
- 2. If external TVS is used, IN pin routing passes through the external TVS firstly, and then connect AW329XX.
- 3. Red bold paths on figure 4 and 5 are power lines that will flow large current, please route them on PCB as straight, wide and short as possible.
- 4. If R₁ and R₂ are used, route OVLO line on PCB as short as possible to reduce parasitic capacitance.
- 5. The power trace from USB connector to AW329XX may suffer from ESD event, keep other traces away from it to minimize possible EMI and ESD coupling.
- 6. Use rounded corners on the power trace from USB connector to AW329XX to decrease EMI coupling.

TAPE AND REEL INFORMATION

CARRIER TAPE



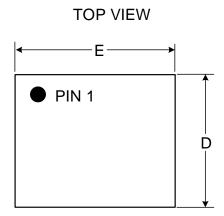
NOTE:

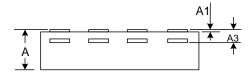
- 1. Unit: mm;
- 2. Material: 3000(carbon filled polycarbonate);
- 3. A permissible difference of the accumulation pitch of the sending hole is assumed to be ± 0.2 up to 10 pitches;
- 4. Surface resistance: 10⁵ to 10¹¹ ohms/sq.

REEL

NOTE:

- 1. Units: mm;
- 2. Material: polystyrene;
- 3. Planeness: max 3mm;
- 4. Surface resistance: 10⁵ to 10¹¹ ohms/sq;
- 5. All outstanding tolerance: ±0.25mm.


PIN 1 I.D.


L2

ØL

С

PACKAGE DESCRIPTION

SIDE VIEW

4	3 '	2 1	
SYMBOL	MIN	NOM	MAX
Α	0.50	0.55	0.60
A1	0.00	0.02	0.05
А3	0.15REF.		
D	1.20	1.30	1.40
Е	1.70	1.80	1.90
e1		0 REF.	
e2		0.200REF.	•
e3	0.400REF.		
L	0.18	0.25	0.30
L1	0.16REF.		

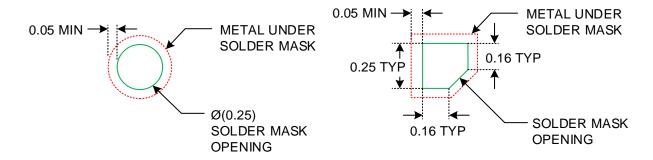
0.25REF.

0.175REF.

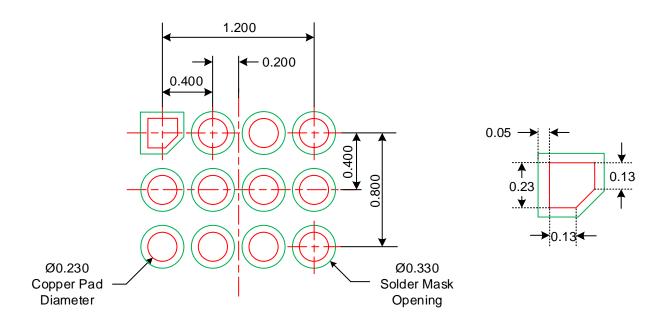
BOTTOM VIEW

е3

Unit: mm


L2

L3


NOTE:

All dimensions do not include mold flash or protrusions.

SOLDER MASK DETAILS

Pad Type: Solder Mask Defined

PAD Type: Non-Solder Mask Defined

NOTE:

- 1. Not to scale
- 2. Unit: mm.

Sep. 2018 V1.1

REFLOW

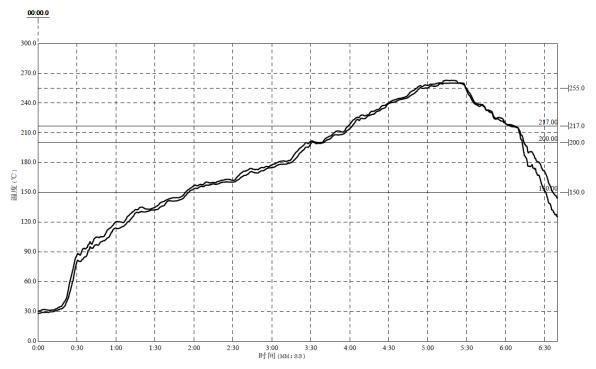


Figure 17 Package Reflow Oven Thermal Profile

Table 2 Package Reflow Standard

Reflow Note	Spec
Average ramp-up rate (217°C to Peak)	Max. 3°C /sec
Time of Preheat temp.(from 150°C to 200°C)	60-120 sec
Time to be maintained above 217°C	60-150 sec
Peak Temperature	250-260°C
Time within 5°C of actual peak temp	20-40 sec
Ramp-down rate	Max. 6°C /sec
Time from 25°C to peak temp	Max. 8min

NOTE:

- 1. All data are compared with the package-top temperature, measured on the package surface;
- 2. AW329XX adopted the Pb-Free assembly.

REVISION HISTORY

Vision	Date	Change Record
V0.9	February 2018	Datasheet V0.9 released
V1.0	April 2018	 Added Typical Characteristics. Added Tape and Reel Information. Added Solder Mask Details. Added Reflow Information.
V1.1	September, 2018	Storage Temperature Modified

Sep. 2018 V1.1

DISCLAIMER

Information in this document is believed to be accurate and reliable. However, Shanghai AWINIC Technology Co., Ltd (AWINIC Technology) does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

AWINIC Technology reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. Customers shall obtain the latest relevant information before placing orders and shall verify that such information is current and complete. This document supersedes and replaces all information supplied prior to the publication hereof.

AWINIC Technology products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an AWINIC Technology product can reasonably be expected to result in personal injury, death or severe property or environmental damage. AWINIC Technology accepts no liability for inclusion and/or use of AWINIC Technology products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications that are described herein for any of these products are for illustrative purposes only. AWINIC Technology makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

All products are sold subject to the general terms and conditions of commercial sale supplied at the time of order acknowledgement.

Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Reproduction of AWINIC information in AWINIC data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. AWINIC is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of AWINIC components or services with statements different from or beyond the parameters stated by AWINIC for that component or service voids all express and any implied warranties for the associated AWINIC component or service and is an unfair and deceptive business practice. AWINIC is not responsible or liable for any such statements.