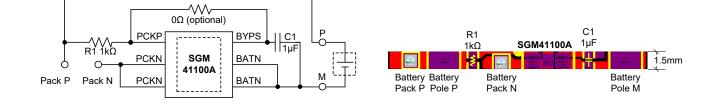
# SGM41100A True Monolithic Li-Ion/Polymer Battery Protector in Tiny Thin Package

### **GENERAL DESCRIPTION**

The SGM41100A is designed for primary protection of Li-Ion/Polymer rechargeable cells. The product integrates all the protections required for safe operation of polymer rechargeable cells. The device is packaged in a tiny and thin package. Its small solution size leaves more space for fitting the battery cell into a given cavity for small size wearable devices.

The SGM41100A integrates all the protections and the required low on-resistance disconnect switch on one die. The protection features include charge and discharge protection, detection and protection of a cell in over-charge, over-discharge, over-current, and battery under-voltage. The product also disconnects the battery pack in the case of deep discharge.

The SGM41100A operates in -40°C to +85°C temperature range, and is in a thin and low profile UTDFN-1.5×2-6L package. This package with a nominal height of 0.5mm is convenient for small cell packing designs.


TYPICAL APPLICATION

## **FEATURES**

- Ultra-Compact Protection Solution
- Pass Resistance: 42mΩ (TYP)
- Operation Current: 0.9µA (TYP)
- Factory Programmable OVP Threshold Options 4.20V to 4.55V with 0.05V per Step
- Over-Charge/Discharge Current Protection 3 Thresholds Combination Options
- Battery Under-Voltage Protection 2.4V/2.6V/2.8V/3.0V Options
- 50nA Deep Discharge Shutdown
- Exhausted Battery Charging from 0.2V
- Input Surge Clamping
- Input Over-Voltage Safe
- Load Short-Circuit Safe
- Reverse Polarity Battery Safe
- Input Reversed-Attaching Safe
- Battery Pack Paralleling Safe
- Locked-Off for Delivery/Assembly
- Available in a Green UTDFN-1.5×2-6L Package

## **APPLICATIONS**

IoT Gadgets Wearable Devices Battery Packs



NOTE: The short circuit of both ends (P and M) of the battery should be avoided during the battery assembly process.

#### Figure 1. Typical Application Circuit and Demonstration Board Outline

## **PACKAGE/ORDERING INFORMATION**

| MODEL            | PACKAGE<br>DESCRIPTION | SPECIFIED<br>TEMPERATURE<br>RANGE | ORDERING<br>NUMBER        | PACKAGE<br>MARKING | PACKING<br>OPTION   |
|------------------|------------------------|-----------------------------------|---------------------------|--------------------|---------------------|
| SGM41100A-420M03 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-420M03YUDT6G/TR | CM8<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-420M05 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-420M05YUDT6G/TR | CMC<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-420M09 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-420M09YUDT6G/TR | CN7<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-420N03 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-420N03YUDT6G/TR | CNA<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-420N05 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-420N05YUDT6G/TR | CNB<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-420N09 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-420N09YUDT6G/TR | CNC<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-420O03 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-420O03YUDT6G/TR | CNE<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-420O05 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-420O05YUDT6G/TR | CNF<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-420O09 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-420O09YUDT6G/TR | CO0<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-420P03 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-420P03YUDT6G/TR | CO2<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-420P05 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-420P05YUDT6G/TR | CO3<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-420P09 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-420P09YUDT6G/TR | CO4<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-425M03 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-425M03YUDT6G/TR | CO6<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-425M05 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-425M05YUDT6G/TR | CO7<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-425M09 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-425M09YUDT6G/TR | CO8<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-425N03 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-425N03YUDT6G/TR | COA<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-425N05 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-425N05YUDT6G/TR | COB<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-425N09 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-425N09YUDT6G/TR | COC<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-425O03 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-425O03YUDT6G/TR | COE<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-425O05 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-425O05YUDT6G/TR | COF<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-425O09 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-425O09YUDT6G/TR | CP0<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-425P03 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-425P03YUDT6G/TR | CP2<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-425P05 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-425P05YUDT6G/TR | CP3<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-425P09 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-425P09YUDT6G/TR | CP4<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-430M03 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-430M03YUDT6G/TR | CP6<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-430M05 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-430M05YUDT6G/TR | CP7<br>XXX         | Tape and Reel, 3000 |

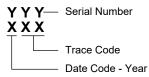
## True Monolithic Li-Ion/Polymer Battery Protector in Tiny Thin Package

SGM41100A

| MODEL            | PACKAGE<br>DESCRIPTION | SPECIFIED<br>TEMPERATURE<br>RANGE | ORDERING<br>NUMBER        | PACKAGE<br>MARKING | PACKING<br>OPTION   |
|------------------|------------------------|-----------------------------------|---------------------------|--------------------|---------------------|
| SGM41100A-430M09 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-430M09YUDT6G/TR | CP8<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-430N03 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-430N03YUDT6G/TR | CPA<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-430N05 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-430N05YUDT6G/TR | CPB<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-430N09 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-430N09YUDT6G/TR | CPC<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-430O03 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-430O03YUDT6G/TR | CPE<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-430O05 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-430O05YUDT6G/TR | CPF<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-430O09 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-430O09YUDT6G/TR | CQ0<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-430P03 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-430P03YUDT6G/TR | CQ2<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-430P05 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-430P05YUDT6G/TR | CQ3<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-430P09 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-430P09YUDT6G/TR | CQ4<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-435M03 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-435M03YUDT6G/TR | CQ6<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-435M05 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-435M05YUDT6G/TR | CQ7<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-435M09 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-435M09YUDT6G/TR | CQ8<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-435N03 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-435N03YUDT6G/TR | CQA<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-435N05 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-435N05YUDT6G/TR | CQB<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-435N09 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-435N09YUDT6G/TR | CQC<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-435O03 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-435O03YUDT6G/TR | CQE<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-435O05 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-435O05YUDT6G/TR | CQF<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-435O09 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-435O09YUDT6G/TR | CR0<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-435P03 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-435P03YUDT6G/TR | CR2<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-435P05 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-435P05YUDT6G/TR | CR3<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-435P09 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-435P09YUDT6G/TR | CR4<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-440M03 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-440M03YUDT6G/TR | CR6<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-440M05 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-440M05YUDT6G/TR | CR7<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-440M09 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-440M09YUDT6G/TR | CR8<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-440N03 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-440N03YUDT6G/TR | CRA<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-440N05 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-440N05YUDT6G/TR | CRB<br>XXX         | Tape and Reel, 3000 |

# True Monolithic Li-Ion/Polymer Battery Protector in Tiny Thin Package

| SGM41100A |
|-----------|
|-----------|


| MODEL            | PACKAGE<br>DESCRIPTION | SPECIFIED<br>TEMPERATURE<br>RANGE | ORDERING<br>NUMBER        | PACKAGE<br>MARKING | PACKING<br>OPTION   |
|------------------|------------------------|-----------------------------------|---------------------------|--------------------|---------------------|
| SGM41100A-440N09 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-440N09YUDT6G/TR | CRC<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-440O03 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-440O03YUDT6G/TR | CRE<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-440O05 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-440O05YUDT6G/TR | CRF<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-440O09 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-440O09YUDT6G/TR | CS0<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-440P03 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-440P03YUDT6G/TR | CS2<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-440P05 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-440P05YUDT6G/TR | CS3<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-440P09 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-440P09YUDT6G/TR | CS4<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-445M03 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-445M03YUDT6G/TR | CS6<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-445M05 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-445M05YUDT6G/TR | CS7<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-445M09 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-445M09YUDT6G/TR | CS8<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-445N03 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-445N03YUDT6G/TR | CSA<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-445N05 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-445N05YUDT6G/TR | CLB<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-445N09 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-445N09YUDT6G/TR | CSB<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-445O03 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-445O03YUDT6G/TR | CSD<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-445O05 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-445O05YUDT6G/TR | CSE<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-445O09 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-445O09YUDT6G/TR | CSF<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-445P03 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-445P03YUDT6G/TR | CT1<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-445P05 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-445P05YUDT6G/TR | CT2<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-445P09 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-445P09YUDT6G/TR | CM6<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-450M03 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-450M03YUDT6G/TR | CT4<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-450M05 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-450M05YUDT6G/TR | CT5<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-450M09 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-450M09YUDT6G/TR | CT6<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-450N03 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-450N03YUDT6G/TR | CT8<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-450N05 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-450N05YUDT6G/TR | CT9<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-450N09 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-450N09YUDT6G/TR | CTA<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-450O03 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-450O03YUDT6G/TR | CTC<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-450O05 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-450O05YUDT6G/TR | CTD<br>XXX         | Tape and Reel, 3000 |

## True Monolithic Li-Ion/Polymer Battery Protector in Tiny Thin Package

| MODEL            | PACKAGE<br>DESCRIPTION | SPECIFIED<br>TEMPERATURE<br>RANGE | ORDERING<br>NUMBER        | PACKAGE<br>MARKING | PACKING<br>OPTION   |
|------------------|------------------------|-----------------------------------|---------------------------|--------------------|---------------------|
| SGM41100A-450O09 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-450O09YUDT6G/TR | CTE<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-450P03 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-450P03YUDT6G/TR | CU0<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-450P05 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-450P05YUDT6G/TR | CU1<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-450P09 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-450P09YUDT6G/TR | CU2<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-455M03 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-455M03YUDT6G/TR | CU4<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-455M05 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-455M05YUDT6G/TR | CU5<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-455M09 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-455M09YUDT6G/TR | CU6<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-455N03 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-455N03YUDT6G/TR | CU8<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-455N05 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-455N05YUDT6G/TR | CU9<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-455N09 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-455N09YUDT6G/TR | CUA<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-455O03 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-455O03YUDT6G/TR | CUC<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-455O05 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-455O05YUDT6G/TR | CUD<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-455O09 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-455O09YUDT6G/TR | CUE<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-455P03 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-455P03YUDT6G/TR | CV0<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-455P05 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-455P05YUDT6G/TR | CV1<br>XXX         | Tape and Reel, 3000 |
| SGM41100A-455P09 | UTDFN-1.5×2-6L         | -40°C to +85°C                    | SGM41100A-455P09YUDT6G/TR | CV2<br>XXX         | Tape and Reel, 3000 |

#### **MARKING INFORMATION**

NOTE: XXX = Date Code and Trace Code.



SGM41100A

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

## **DEVICE DESCRIPTION**

### Model: SGM41100A-AAABCC

|                                                |       | Over      | -Voltage T              | hreshold Opt  | ions    |      |           |      |  |
|------------------------------------------------|-------|-----------|-------------------------|---------------|---------|------|-----------|------|--|
| Option Code "AAA"                              | 420   | 425       | 425 430 435 440 445 450 |               |         |      | 450       | 455  |  |
| Over-Voltage Threshold<br>V <sub>OV</sub> (V)  | 4.20  | 4.25      | 4.30                    | 4.35          | 4.40    | 4.45 | 4.50      | 4.55 |  |
|                                                |       | Unde      | r-Voltage <sup>-</sup>  | Threshold Opt | tions   |      |           |      |  |
| Option Code "B"                                | M     |           |                         | Ν             | 0       |      | Р         |      |  |
| Under-Voltage Threshold<br>V <sub>UV</sub> (V) | 2     | .4 2.0    |                         | 2.6           | 2.8     |      | 3.0       |      |  |
|                                                |       | Current 1 | Threshold               | Combination   | Options |      |           |      |  |
| Option Code "CC"                               |       | 03        |                         | 05            |         |      | 09        |      |  |
| Over-Charge Current<br>I <sub>OC</sub> (A)     | 0.180 |           |                         | 0.340         |         |      | 0.700     |      |  |
| Over-Discharge Current<br>I <sub>OD</sub> (A)  |       | 0.260     |                         | 0.480         |         |      | 0.900     |      |  |
| Short-Circuit Current (A)                      |       | 4 × 0.260 |                         | 4 × 0.480     |         |      | 3 × 0.900 |      |  |

#### **ABSOLUTE MAXIMUM RATINGS**

| PCKP to PCKN, 13V <sup>(1)</sup> , 10mA Clamping <sup>(2)</sup> 5s |
|--------------------------------------------------------------------|
| PCKP to PCKN4.5V or +9V <sup>(3)</sup> , Continuous                |
| PCKP to BATN4.5V <sup>(3)</sup> or +5.5V                           |
| PCKP to PCKN Short Circuit <sup>(4)</sup> Continuous               |
| PCKP to PCKN Attachment Inrush/Outrush <sup>(5)</sup> +9V/-4.5V    |
| PCKP to BATN Attachment Inrush/Outrush <sup>(6)</sup> ±4.5V        |
| Surge Current <sup>(7)</sup> ±20A                                  |
| Junction Temperature+150°C                                         |
| Storage Temperature Range65°C to +150°C                            |
| Lead Temperature (Soldering, 10s)+260°C                            |
| ESD Susceptibility                                                 |
| HBM                                                                |
| CDM                                                                |

#### NOTES:

1. Evaluation at  $V_{BAT}$  = 4.5V.

2. The clamping may reach 10mA at an input voltage > 13V.

3. Test with a voltage regulated supply that has 2A current limit and increase the voltage progressively for less than 1V/ms slope rate. Apply a voltage to the device under test from 0V to given voltages.

4. The device is tested after being installed on the circuit board in Figure 1. Clip a 4.5V 5A power source onto the P and M to simulate a battery and short the Pack P and the Pack N with an  $80m\Omega$  wire.

5. The device is tested after being installed on the circuit board in Figure 1. Connect a 3.2V supply and 2A sinking resistor  $R_{SINK}$  as showed in Figure 2 to the P and M for inrush test. Clip a 4.5V 5A supply for outrush test.

6. The device is tested after being installed on the circuit board in Figure 1 with the circuit in Figure 3.

7. Parallel or connect in reverse polarity two battery packs of Figure 1. Limit the battery pack impedance to limit the surge current to 20A.

### **RECOMMENDED OPERATING CONDITIONS**

| Supply Voltage Range        | 0V to 6V     |
|-----------------------------|--------------|
| Battery Voltage Range       | 0 to 4.5V    |
| Junction Temperature Range4 | 0°C to +85°C |

### **OVERSTRESS CAUTION**

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

### **ESD SENSITIVITY CAUTION**

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

### DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

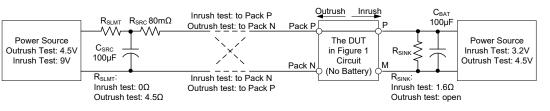



Figure 2. Test Set-Up for Pack P to Pack N Attachment Inrush/Outrush

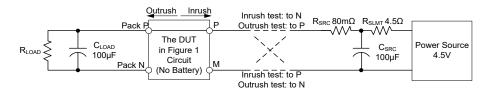
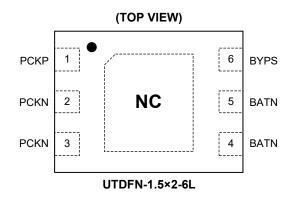




Figure 3. Test Set-Up for Pack P to BATN Attachment Inrush/Outrush

## **PIN CONFIGURATION**



### **PIN DESCRIPTION**

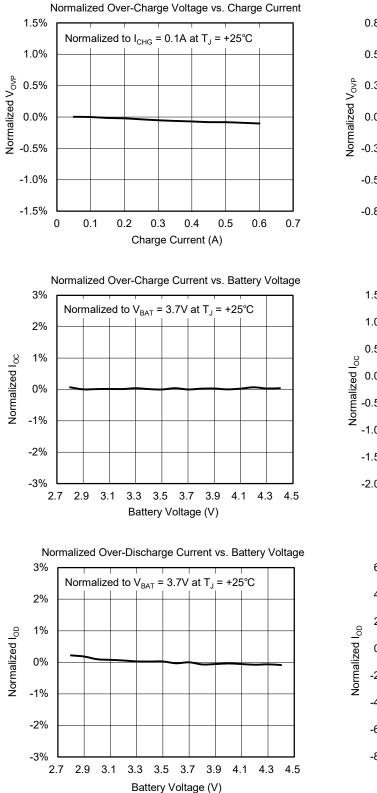
| PIN            | NAME | TYPE | FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|----------------|------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1              | PCKP | Ρ    | Power Input and Output, the Battery Pack Positive Connection. The default state after battery attached is closed or locked-off, dependent on the external circuitry. Connect a 200nF capacitor between PCKN pin and BATN pin for setting the default state to closed. It is recommended to connect a 0 $\Omega$ resistor between PCKP pin and BYPS pin for suppressing noise applied to the PCKP input. |  |  |
| 2, 3           | PCKN | Р    | Power Input and Output, the Battery Pack Cathode. Short this pin to BATN pin to release off the locked-open state, and make the output path closed.                                                                                                                                                                                                                                                     |  |  |
| 4, 5           | BATN | G    | Ground of Internal Circuit. Connect to the battery cathode end.                                                                                                                                                                                                                                                                                                                                         |  |  |
| 6              | BYPS | I/O  | Bypass Pin and Disconnection Locked-Off Triggering Input. Place a $1\mu$ F capacitor between this pin and BATN pin. Shorting this pin to PCKN pin momentarily places the circuit into locked-open state.                                                                                                                                                                                                |  |  |
| Exposed<br>Pad | NC   | NC   | Not Connected Internally. It is recommended to connect to PCKN pin or BATN pin for benefiting ESD shielding or recovering from the over-current protection. The over-all leakage condition on a specific PCB board may have different effects on the recovery process. With this process, the on-board verification is a necessary proof of better connection.                                          |  |  |

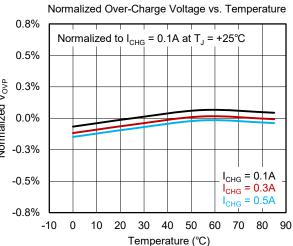
NOTE: I/O: Input or Output, G: Ground, P: Power for the Circuit, NC: Not Connected.

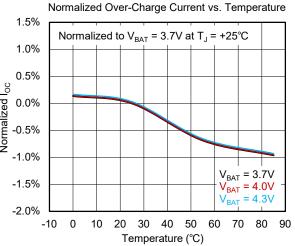
## **ELECTRICAL CHARACTERISTICS**

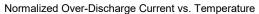
(T<sub>J</sub> = +25°C,  $I_{CHG}$  =  $I_{DIS}$  = 200mA,  $V_{BAT}$  = 3.7V, unless otherwise noted.)

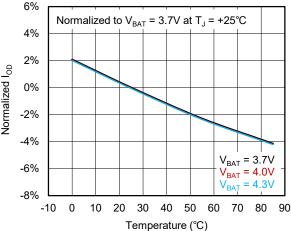
| PARAMETER                       | SYMBOL             | CONDITI                                       | ONS                                             | MIN   | TYP   | MAX   | UNITS |
|---------------------------------|--------------------|-----------------------------------------------|-------------------------------------------------|-------|-------|-------|-------|
|                                 |                    |                                               | T <sub>J</sub> = +25°C                          | 4.175 |       | 4.225 |       |
|                                 |                    |                                               | T <sub>J</sub> = -20°C to +55°C                 | 4.160 | 4.200 | 4.240 |       |
|                                 |                    |                                               | T <sub>J</sub> = -40°C to +85°C                 | 4.150 |       | 4.250 |       |
|                                 |                    |                                               | T <sub>J</sub> = +25°C                          | 4.225 |       | 4.275 |       |
|                                 |                    | SGM41100A-425                                 | T <sub>J</sub> = -20°C to +55°C                 | 4.210 | 4.250 | 4.290 |       |
|                                 |                    |                                               | T <sub>J</sub> = -40°C to +85°C                 | 4.200 |       | 4.300 |       |
|                                 |                    |                                               | T <sub>J</sub> = +25°C                          | 4.275 |       | 4.325 |       |
|                                 |                    | SGM41100A-430                                 | T <sub>J</sub> = -20°C to +55°C                 | 4.260 | 4.300 | 4.340 |       |
|                                 |                    |                                               | T <sub>J</sub> = -40°C to +85°C                 | 4.250 |       | 4.350 |       |
|                                 |                    |                                               | T <sub>J</sub> = +25°C                          | 4.325 |       | 4.375 |       |
|                                 |                    | SGM41100A-435                                 | T <sub>J</sub> = -20°C to +55°C                 | 4.310 | 4.350 | 4.390 |       |
|                                 | N                  |                                               | T <sub>J</sub> = -40°C to +85°C                 | 4.300 |       | 4.400 |       |
| Over-Charge Voltage Threshold   | V <sub>ov</sub>    |                                               | T <sub>J</sub> = +25°C                          | 4.375 |       | 4.425 | V     |
|                                 |                    |                                               | T <sub>J</sub> = -20°C to +55°C                 | 4.360 | 4.400 | 4.440 |       |
|                                 |                    |                                               | T <sub>J</sub> = -40°C to +85°C                 | 4.350 |       | 4.450 |       |
|                                 |                    | SGM41100A-445                                 | T <sub>J</sub> = +25°C                          | 4.425 |       | 4.475 |       |
|                                 |                    |                                               | T <sub>J</sub> = -20°C to +55°C                 | 4.410 |       | 4.490 |       |
|                                 |                    |                                               | T <sub>J</sub> = -40°C to +85°C                 | 4.400 |       | 4.500 |       |
|                                 |                    |                                               | T <sub>J</sub> = +25°C                          | 4.475 |       | 4.525 |       |
|                                 |                    | SGM41100A-450                                 | T <sub>J</sub> = -20°C to +55°C                 | 4.460 | 4.500 | 4.540 |       |
|                                 |                    |                                               | $T_J = -40^{\circ}C$ to $+85^{\circ}C$          | 4.450 |       | 4.550 |       |
|                                 |                    |                                               | T <sub>J</sub> = +25°C                          | 4.525 |       | 4.575 |       |
|                                 |                    | SGM41100A-455                                 | T <sub>J</sub> = -20°C to +55°C                 | 4.510 | 4.550 | 4.590 |       |
|                                 |                    |                                               | T <sub>J</sub> = -40°C to +85°C                 | 4.500 |       | 4.600 |       |
| OV Release Hysteresis           | V <sub>OVHYS</sub> | Charger voltage lower<br>than battery voltage | $T_J = -40^{\circ}C$ to $+85^{\circ}C$          | 100   | 145   | 190   | mV    |
|                                 |                    |                                               | T <sub>J</sub> = +25°C                          | 2.36  |       | 2.44  |       |
|                                 |                    | SGM41100AM                                    | $T_J = -20^{\circ}C$ to $+55^{\circ}C$          | 2.35  | 2.40  | 2.45  |       |
|                                 |                    |                                               | $T_{J} = -40^{\circ}C \text{ to } +85^{\circ}C$ | 2.34  |       | 2.46  |       |
|                                 |                    |                                               | T <sub>J</sub> = +25°C                          | 2.56  |       | 2.64  |       |
|                                 |                    | SGM41100AN                                    | $T_J = -20^{\circ}C$ to $+55^{\circ}C$          | 2.55  | 2.60  | 2.65  |       |
| Battery Under-Voltage Threshold | V <sub>UV</sub>    |                                               | $T_J = -40^{\circ}C$ to $+85^{\circ}C$          | 2.54  |       | 2.66  | V     |
| Battery Onder-Voltage Threshold | VUV                |                                               | T <sub>J</sub> = +25°C                          | 2.76  |       | 2.84  | V     |
|                                 |                    | SGM41100AO                                    | $T_J = -20^{\circ}C$ to $+55^{\circ}C$          | 2.75  | 2.80  | 2.85  |       |
|                                 |                    |                                               | $T_J = -40^{\circ}C$ to $+85^{\circ}C$          | 2.74  |       | 2.86  |       |
|                                 |                    |                                               | T <sub>J</sub> = +25°C                          | 2.96  |       | 3.04  |       |
|                                 |                    | SGM41100AP                                    | T <sub>J</sub> = -20°C to +55°C                 | 2.95  | 3.00  | 3.05  | ]     |
|                                 |                    |                                               | T <sub>J</sub> = -40°C to +85°C                 | 2.94  |       | 3.06  | ]     |
| UV Release Hysteresis           | V <sub>UVHYS</sub> | When a charging supply is applied             | $T_J = -40^{\circ}C$ to +85°C                   | 70    | 100   | 130   | mV    |
|                                 | 1                  | 1 11 1                                        | 1                                               |       |       |       | L     |


## **ELECTRICAL CHARACTERISTICS (continued)**


(T<sub>J</sub> = +25°C,  $I_{CHG}$  =  $I_{DIS}$  = 200mA,  $V_{BAT}$  = 3.7V, unless otherwise noted.)

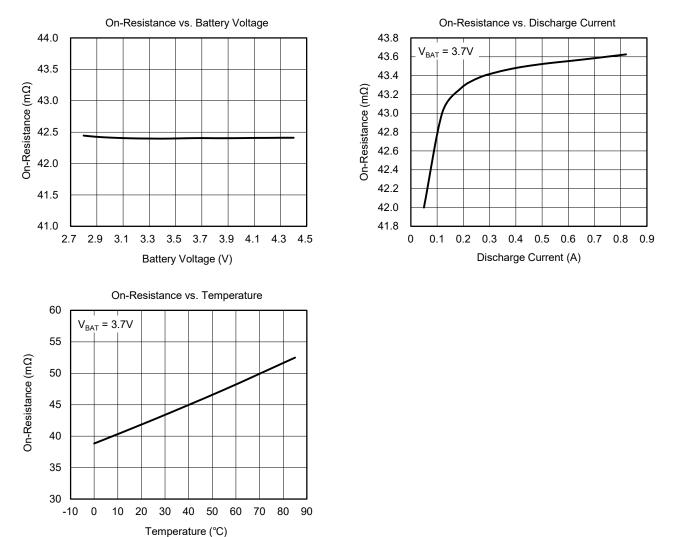

| PARAMETER                               | SYMBOL             | CONDIT                                                                                                                                                                                                                     | IONS                                          | MIN               | TYP                 | MAX  | UNITS |
|-----------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------|---------------------|------|-------|
|                                         | .,                 | T」 = +25℃                                                                                                                                                                                                                  |                                               | 1.4               | 1.0                 | 1.8  |       |
| Shutdown Voltage                        | V <sub>SHDN</sub>  | $T_J = -40^{\circ}C$ to $+85^{\circ}C$                                                                                                                                                                                     |                                               | 1.2               | 1.6                 | 2.0  | V     |
|                                         |                    |                                                                                                                                                                                                                            | T <sub>J</sub> = +25°C                        | 0.19              |                     | 0.33 |       |
|                                         |                    | SGM41100A03                                                                                                                                                                                                                | $T_J = -40^{\circ}C$ to $+85^{\circ}C$        | 0.17              | 0.26                | 0.35 |       |
|                                         |                    | 001444004 05                                                                                                                                                                                                               | T <sub>J</sub> = +25℃                         | 0.39              | 0.40                | 0.57 |       |
| Over-Discharge Current                  | I <sub>OD</sub>    | SGM41100A05                                                                                                                                                                                                                | $T_J = -40^{\circ}C$ to $+85^{\circ}C$        | 0.36              | 0.48                | 0.61 | A     |
|                                         |                    | COM44400A 00                                                                                                                                                                                                               | T <sub>J</sub> = +25°C                        | 0.77              | 0.00                | 1.03 |       |
|                                         |                    | SGM41100A09                                                                                                                                                                                                                | $T_J = -40^{\circ}C$ to $+85^{\circ}C$        | 0.72              | 0.90                | 1.10 | 1     |
|                                         |                    | SCM41100A 02                                                                                                                                                                                                               | T <sub>J</sub> = +25°C                        | 0.11              | 0.18                | 0.25 |       |
|                                         |                    | SGM41100A03                                                                                                                                                                                                                | $T_J = -40^{\circ}C$ to $+85^{\circ}C$        | 0.10              | 0.10                | 0.26 | 1     |
| Quer Charge Current                     |                    | SCM41100A 05                                                                                                                                                                                                               | T <sub>J</sub> = +25°C                        | 0.26              | 0.24                | 0.42 |       |
| Over-Charge Current                     | IOC                | $I_{oc}$ SGM41100A05 $T_{J} = -40^{\circ}C$ to +85                                                                                                                                                                         |                                               | 0.25              | 0.34                | 0.44 | A     |
|                                         |                    | SCM41100A 00                                                                                                                                                                                                               | T <sub>J</sub> = +25°C                        | 0.58              | 0.70                | 0.82 | -     |
|                                         |                    | SGM41100A09                                                                                                                                                                                                                | $T_J = -40^{\circ}C$ to $+85^{\circ}C$        | 0.56              |                     | 0.86 |       |
| Pass Resistance                         | R₽                 | T <sub>J</sub> = +25°C                                                                                                                                                                                                     |                                               | 38                | 42                  | 46   | mΩ    |
|                                         | ГХР                | $T_J = -40^{\circ}C$ to $+85^{\circ}C$                                                                                                                                                                                     |                                               | 27                |                     | 57   |       |
| Operating Current                       | I <sub>OP</sub>    | T <sub>J</sub> = +25°C                                                                                                                                                                                                     |                                               |                   | 0.9                 | 1.3  | μA    |
| Operating Current                       | IOP                | $T_J = -40^{\circ}C$ to $+85^{\circ}C$                                                                                                                                                                                     |                                               |                   | 0.9                 | 1.5  | μΑ    |
| Shutdown Current                        | I <sub>SHDN</sub>  | The stable current flowing<br>into the device when it is i<br>any of following shutdown<br>conditions that the battery<br>voltage is lower than $V_{UV}$<br>(then $V_{SHDN}$ if the battery<br>voltage further drops), the | n<br>T <sub>J</sub> = +25°C                   |                   |                     | 0.05 | - μΑ  |
|                                         |                    | device is set into<br>latched-off                                                                                                                                                                                          | $T_J = -40^{\circ}C \text{ to } +85^{\circ}C$ |                   |                     | 0.3  |       |
| Over-Voltage Detection Delay            | t <sub>OVPD</sub>  |                                                                                                                                                                                                                            |                                               | 0.71              | 1.05                | 1.39 | s     |
| Under-Voltage Detection Delay           | t <sub>UVPD</sub>  |                                                                                                                                                                                                                            |                                               | 0.08              | 0.13                | 0.18 | s     |
| Over-Discharge Current Detection Delay  | t <sub>ODD</sub>   |                                                                                                                                                                                                                            |                                               | 45                | 66                  | 87   | ms    |
| Over-Discharge Current Retry Time       | t <sub>RETRY</sub> |                                                                                                                                                                                                                            |                                               | 0.34              | 0.50                | 0.66 | s     |
| Over-Charge Current Detection Delay     | t <sub>OCD</sub>   |                                                                                                                                                                                                                            |                                               | 45                | 66                  | 87   | ms    |
| Discharge Short-Circuit Detection Delay | t <sub>OCSD</sub>  |                                                                                                                                                                                                                            |                                               | 0.20              | 0.30                | 0.40 | ms    |
| Discharge Short-Circuit Current         | I <sub>sc</sub>    | SGM41100A09                                                                                                                                                                                                                | SGM41100A09                                   |                   | 3 × I <sub>OD</sub> |      | A     |
|                                         | ISC                | Other Options                                                                                                                                                                                                              |                                               | $4 \times I_{OD}$ |                     | ~    |       |


## **TYPICAL PERFORMANCE CHARACTERISTICS**


 $T_J$  = +25°C,  $I_{CHG}$  =  $I_{DIS}$  = 200mA,  $V_{BAT}$  = 3.7V, unless otherwise noted.












## **TYPICAL PERFORMANCE CHARACTERISTICS (continued)**

 $T_J$  = +25°C,  $I_{CHG}$  =  $I_{DIS}$  = 200mA,  $V_{BAT}$  = 3.7V, unless otherwise noted.



## **DETAILED DESCRIPTION**

The SGM41100A monitors voltage and current applied on battery cell connected between PCKP and BATN, and opens the connection between battery and pack terminal with its internal switches when a fault condition is detected.

### **Voltage Related Protections**

When battery voltage reaches over-voltage threshold ( $V_{OV}$ ), the charge path is open circuited. The path closes again when the charger voltage is lower than battery voltage and the battery voltage falls back about  $V_{OVHYS}$  below the over-voltage threshold ( $V_{OV}$ ).

In order to protect the battery from over-discharge when battery voltage falls below  $V_{UV}$  for  $t_{UVPD}$  or  $V_{SHDN}$  instantly, the discharge path is open-circuit, the device enters into shutdown with only very low resistive leakage flowing into it, which helps to keep the battery from harmful exhausted condition as long as possible. The path closes again when a charging supply is applied and the battery voltage rises to about  $V_{UVHYS}$  above the  $V_{UV}$  threshold.

**Charge an exhausted battery:** While the battery is over-discharged the battery could be in the following states.

- a) Battery voltage below 0.2V: Both charge and discharge paths are open-circuit.
- b) Battery voltage in the range of 0.2V to  $V_{SHDN}$ : The battery is charged through the MOSFET body diode.
- c) Battery voltage in the range of V<sub>SHDN</sub> to V<sub>UV</sub>: The path switch is on for ~128ms in every 130ms ( $t_{UVPD}$ ) and off for ~2ms when charge current flows through the body diode, during which the charger sees that the terminal voltage steps up/down.
- d) Battery voltage above under-voltage threshold: In this condition, the chip enters normal operation and charge and discharge modes are allowed.

### **Current Related Protections**

When over-discharge current condition occurs and keeps for over-discharge current detection delay ( $t_{ODD}$ ), the discharge path opens. The path closes again after  $t_{RETRY}$  for retrying.

During a charging condition if an over-charge current is identified, the SGM41100A enters the locked-off state. This state can be reset by charger removal (pack removal).

**Short-circuit protection:** When discharge current exceeds 4 times or 3 times of the over-current threshold (4-times for  $_{03}/_{05}$  options, 3-times for  $_{09}$  option), discharge path disconnects instantly in t<sub>OCSD</sub>, in order to protect the battery from potential over-current stress. After this disconnection, the SGM41100A stays in the locked-off non-conducting state until being reactivated, or leakage condition pulls the PCKN potential off the PCKP's towards to the BATN potential when the load is fully detached off.

**Burst load outrush:** In many systems, overload conditions will occur momentarily. The device allows for this short duration discharge condition by allowing the discharge path to remain closed even after an over-discharge current is detected for duration of over-discharge current detection delay.

When an over-charge current condition is identified, and after over-charge current detection deglitch the charge path is cut off. The device restores to the conducting state when the PCKP to PCKN voltage drops about 3mV lower than the battery voltage.

**Parallel battery packs:** When paralleling two battery packs utilizing SGM41100As, a momentary current surge may cause over-charge current protection in the pack with the lower voltage. The higher voltage pack could enter an over-discharge current protection. The over-charge current or over-discharge current protection resets only after the higher voltage battery pack discharges to a voltage slightly lower than the lower voltage pack. After this discharge both packs will conduct.

It is highly recommended that the packs should be placed into a locked-open non-conducting state first (by connecting BYPS to PCKN momentarily) before being paralleled to avoid current over-stress. When a charge supply is applied to the paralleled packs, the locked-open state will release.

## **DETAILED DESCRIPTION (continued)**

**Battery delivery state:** It is recommended to deliver a battery pack in a locked-off non-conducting state to avoid unintentional shorting during production handling or transportation. The circuit of Figure 1 places the SGM41100A into a locked-off state after battery attachment by momentarily shorting BYPS and PCKN.

Connecting a 220nF capacitor clapping between BATN and PCKN may place the device into conducting state, which might couple enough charge for making enough voltage difference between PCKN and PCKP for over about 1.3V. The voltage difference is the dividing result of the clapping capacitance and the load resistance and capacitance. The 220nF capacitance is recommended for no load condition.

**Pack activation:** In order to release the pack from locked-off state and to place it into a conducting state, apply a charging input, or connect PCKN to BATN momentarily when there is no high load capacitance.

**Caution:** The battery short or load side terminal short outside the protection circuit's loop during battery attaching may cause excessive high surge current and excessive high current-breaking voltage surge, which may cause damage or degrade the life duration of battery and protection circuit. It is recorded that the accidental anode to ground plane shorting causes heavy surge, which actually could be avoided by leaving enough clearance around the anode pad on PCB or soldering/attaching the anode firstly in assembly (as the short between cathode to ground wouldn't cause excessive surge).

### Surge, ESD and Reversed Attachment

The SGM41100A absorbs voltage surge applied between PCKP and PCKN, by passing the surge current through its switch and the battery. Surge may occur when attaching the pack or battery cell.

The SGM41100A survives either if a cell is placed in reverse or a charge input is attached in reverse, but not both at the same time. Any of these reverse attachments, short circuits, inrush surges and outrush will cause over-stress. Do not test those cases in normal production inspection, as this kind of test itself may cause performance degradation or even damage the device. **Caution about ESD damage to the battery:** The battery pack might be the biggest piece of elements in equipment and induce much during an ESD event. Careful design of guided discharge path is desired for the equipment case sealing air-gap discharge over the battery and those connect to the battery closely.

**Caution on electrochemical corrosion:** As a battery can apply potential over the electrodes continuously and cause electrochemical corrosion, the corrosion product may spread in the hollow beneath a surface mount device and cause leakage. Moisture-proof coating is recommended, especially when using compact devices.

### **Cautions for Evaluation Test**

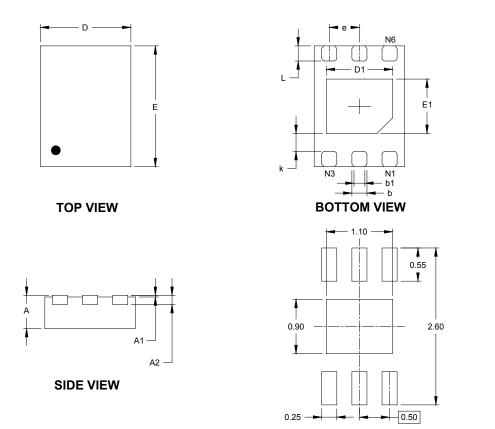
Some types of electronic load simulators may have excessive inrush current, and some BPM testers may have voltage transition surges, which may trigger the protection of the SGM41100A. Careful attention is required for doing such evaluations with these kinds of equipment. External voltage and current limits within the conditions specified in the Absolute Maximum Ratings section of this datasheet are required.

### **Select Protection Parameters**

Battery models from different vendors may be customized for different applications. Consult the battery vendor for protection limits for specific battery model.

Parameters for the protection circuit and of the charger circuit affecting same variables should be set for proper charge or discharge protection sequence. For example, the over-voltage threshold of the battery should be  $50\text{mV} \sim 100\text{mV}$  higher than constant voltage threshold of the charger.

**Cautions on parameter misalignment:** If the  $V_{OV}$  is lower than the full charge voltage of the battery charger, the protection circuit cuts off the battery charge path before the battery is fully charged, and turns into the non-conductive locked-off state; if the  $I_{OC}$  is lower than the charger's charge current, the protection circuit also turns itself into the locked-off state. In either  $V_{OV}$  or  $I_{OC}$ , the charger input should be removed and then re-applied for activating the protection circuit from the locked-off state to the conducting state. If the charger is not removed after a  $V_{OV}$  or  $I_{OV}$  event, the battery will not be charged even if the battery voltage is depleted.

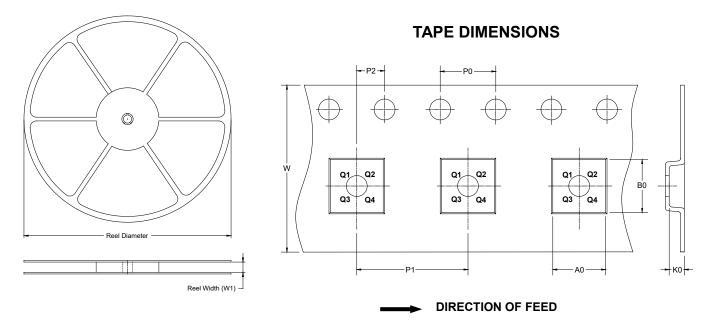

### **REVISION HISTORY**

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

| DECEMBER 2020– REV.A to REV.A.1                 | Page |
|-------------------------------------------------|------|
| Updated Electrical Characteristics section      |      |
| Updated Detailed Description section            |      |
| Changes from Original (OCTOBER 2020) to REV.A   | Page |
| Changed from product preview to production data | All  |

# PACKAGE OUTLINE DIMENSIONS

## UTDFN-1.5×2-6L

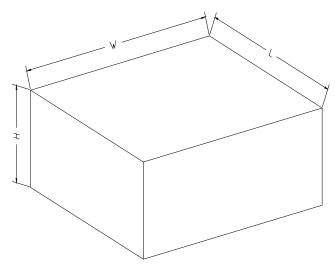



RECOMMENDED LAND PATTERN (Unit: mm)

| Symbol | -         | nsions<br>meters | Dimensions<br>In Inches |       |  |
|--------|-----------|------------------|-------------------------|-------|--|
|        | MIN       | MAX              | MIN                     | MAX   |  |
| A      | 0.500     | 0.600            | 0.020                   | 0.024 |  |
| A1     | 0.000     | 0.050            | 0.000                   | 0.002 |  |
| A2     | 0.152 REF |                  | 0.006 REF               |       |  |
| D      | 1.400     | 1.600            | 0.055                   | 0.063 |  |
| D1     | 1.000     | 1.200            | 0.039                   | 0.047 |  |
| E      | 1.900     | 2.100            | 0.075                   | 0.083 |  |
| E1     | 0.800     | 1.000            | 0.031                   | 0.039 |  |
| k      | 0.300 REF |                  | 0.012 REF               |       |  |
| b      | 0.200     | 0.300            | 0.008                   | 0.012 |  |
| b1     | 0.180 REF |                  | 0.007 REF               |       |  |
| e      | 0.500 BSC |                  | 0.020 BSC               |       |  |
| L      | 0.200     | 0.300            | 0.008                   | 0.012 |  |

## TAPE AND REEL INFORMATION

### **REEL DIMENSIONS**




NOTE: The picture is only for reference. Please make the object as the standard.

### **KEY PARAMETER LIST OF TAPE AND REEL**

| Package Type   | Reel<br>Diameter | Reel Width<br>W1<br>(mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P0<br>(mm) | P1<br>(mm) | P2<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|----------------|------------------|--------------------------|------------|------------|------------|------------|------------|------------|-----------|------------------|
| UTDFN-1.5×2-6L | 7″               | 9.5                      | 1.70       | 2.30       | 0.75       | 4.0        | 4.0        | 2.0        | 8.0       | Q2               |

## CARTON BOX DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

### **KEY PARAMETER LIST OF CARTON BOX**

| Reel Type   | Length<br>(mm) | Width<br>(mm) | Height<br>(mm) | Pizza/Carton |        |
|-------------|----------------|---------------|----------------|--------------|--------|
| 7" (Option) | 368            | 227           | 224            | 8            |        |
| 7"          | 442            | 410           | 224            | 18           | DD0002 |