FSA2267 / FSA2267A 0.35Ω Low-Voltage Dual-SPDT Analog Switch

Features

- Typical 0.35Ω On Resistance (R_{ON}) for +2.7V Supply
- FSA2267A Features <10 μ A I $_{CCT}$ Current when S Input is Lower than V $_{CC}$
- R_{ON} Fatness for +2.7V Supply: 0.25Ω Maximum
- 1.6mm x 2.1mm 10-Lead MicroPak™ Package
- Broad V_{CC} Operating Range
- Low THD (0.02% Typical for 32Ω Load)
- High Current Handling Capability (350mA Continuous Current <3.3V Supply)

Applications

- · Cell phone
- PDA
- · Portable Media Player

Description

The FSA2267 and FSA2267A are Dual Single Pole Double Throw (SPDT) analog switches. The FSA2267 operates from a single 1.65V to 3.6V supply, while the FSA2267A operates from a single 2.3V to 4.3V supply. Each features an ultra-low On Resistance of 0.35 Ω at a +2.7V supply and 25°C. Both devices are fabricated with sub-micron CMOS technology to achieve fast switching speeds and designed for break-before-make operation.

FSA2267A features very low quiescent current, even when the control voltage is lower than the V_{CC} supply. This feature services the mobile handset applications very well, allowing for the direct interface with baseband processor general-purpose I/Os.

Ordering Information

Order Number	Top Mark	Package Description	Packing Method
FSA2267L10X	FC	5000 Units on Tape and Reel	
FSA2267AL10X	FD	10-Lead MicroPak, 1.6 x 2.1mm, JEDEC MO-255	5000 Units on Tape and Reel
FSA2267AMUX	FSA 2267A	10-Lead Molded Small Outline Package (MSOP), JEDEC MO-187, 3.0mm Wide	4000 Units on Tape and Reel

Figure 1. Application Diagram

Analog Symbols

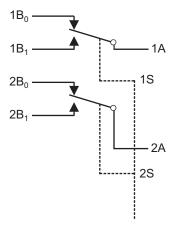


Figure 2. Analog Symbol

Connections Diagram

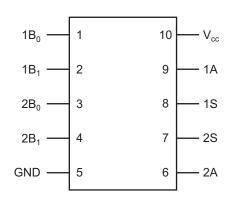


Figure 3. 10-Lead MSOP

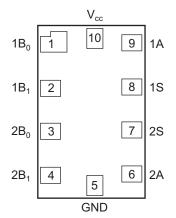


Figure 4. 10-Lead Micropak

Truth Table

Control Input(s)	Function
LOW Logic Level	B ₀ Connected to A
HIGH Logic Level	B ₁ Connected to A

Pin Descriptions

Pin	Name	Function
1, 2, 3, 4, 6, 9	1B ₀ , 1B ₁ , 2B ₀ , 2B ₁ , 2A, 1A	Data Ports
8, 7	1S, 2S	Control Input
10	VCC	Supply Voltage
5	GND	Ground

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply Voltage	-0.5	+5.5	V
V _S	Switch Voltage ⁽¹⁾	-0.5	V _{CC} + 0.5	V
V _{IN}	Control Input Voltage ⁽¹⁾	-0.5	5.5	V
I _{IK}	Input Diode Current ⁽²⁾	-50		mA
I _{SW}	Switch Current		350	mA
I _{SWPEAK}	Peak Switch Current (Pulsed at 1ms Duration, <10% Duty Cycle)		500	mA
T _{STG}	Storage Temperature Range	-65	+150	°C
T _J	Maximum Junction Temperature		+150	°C
T _L	Lead Temperature (Soldering, 10 Seconds)		+260	°C
	Human Body Model: FSA2267		7500	V
ESD	Human Body Model, JESD22-A114:FSA2267A		7000	V
	Charged Device Model, JESD22-C101: FSA2267/FSA2267A		1000	V

Notes:

- 1. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
- 2. Minimums define the acceptable range of current. Negative current should not exceed minimun negative values.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Max.	Unit
	Supply Voltage			V
V_{CC}	FSA2267	1.65	3.6	V
	FSA2267A	2.3	4.3	
V _{IN}	Control Input Voltage ⁽³⁾	0	V _{CC}	V
V _{SW}	Switch Input Voltage	0	V _{CC}	V
T _A	Operating Temperature	-40	+85	°C

Note:

3. Unused inputs must be held HIGH or LOW. They may not float.

ESD Protection

ESD Performance of the FSA2267/FSA2267A

FSA2267

- ? HBM all pins 7.0kV
- ? CDM all pins 1.0kV

FSA2267A

- ? HBM all pins 7.5kV
- ? CDM all pins 1.0kV

Human Body Model

Figure 5 shows the schematic representation of the Human Body Model ESD event. Figure 6 is the ideal waveform representation of the Human Body Model. The device is tested to JEDEC: JESD22-A114 Human Body Model.

Charged Device Model

In manufacturing test and handling environments, a more useful model is the Charged Device Model and the FSA2267/FSA2267A has a very good ESD immunity to this model. The device is tested to JEDEC: JESD22-C101 Charged Device Model.

IEC 61000-4-2

The IEC 61000-4-2 standard covers ESD testing and performance of finished equipment and evaluates the equipment in its entirety for ESD immunity. Fairchild Semiconductor has evaluated this device using the IEC 6100-4-2 representative system model depicted in Figure 7.

ESD values measured via the IEC 61000-4-2 evaluation method are influenced by the specific board layout, board size, and many other factors of the manufacturer's product application. Measured system ESD values cannot be guaranteed by Fairchild Semiconductor to exactly correlate to a manufacturer's in-house testing due to these application environment variables. Fairchild Semiconductor has been able to determine that, for ultra-portable applications, an enhanced ESD immunity, relative to the IEC 61000-4-2 specification, can be achieved with the inclusion of a 100 Ω -series resistor in the V_{CC} supply path to the analog switch (see Figure 8). Typical improvements of between 3-6kV of ESD immunity (I/O to GND) have been measured with the inclusion of the resistor with the IEC 61000-4-2 representative model. For more information on ESD testing methodologies, please refer to:

AN-6019 Fairchild Analog Switch Products ESD Test Methodology Overview

http://www.fairchildsemi.com/an/AN/AN-6019.pdf.

Additional ESD Test Conditions

For information regarding test methodologies and performance levels, please contact Fairchild Semiconductor.

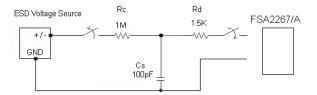


Figure 5. Human Body ESD Test Model

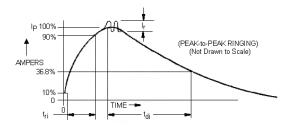


Figure 6. HBM Current Waveform

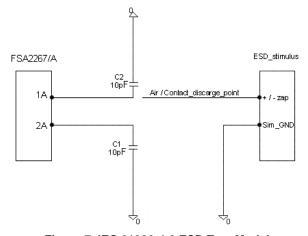


Figure 7. IEC 61000-4-2 ESD Test Model

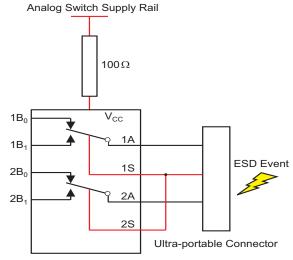


Figure 8. ESD Immunity with 100Ω Resistor

FSA2267 DC Electrical Characteristics

All typical values are at 25°C unless otherwise specified.

Symbol	Parameter	Conditions	v _{cc}	T	\ = +25	°C	T _A = -40 to +85°C		Units
			(V)	Min.	Тур.	Max.	Min.	Max.	
			2.7 to 3.6				2.0		
V _{IH}	Input Voltage High		2.3 to 2.7				1.7		V
""	1		1.65 to 1.95				0.65 V _{CC}		
			2.7 to 3.6					0.8	
V _{IL}	Input Voltage Low		2.3 to 2.7					0.7	V
- 16	,		1.65 to 1.95					0.35 V _{CC}	
I _{IN}	Control Input Leakage	$V_{IN} = 0V$ to V_{CC}	1.65 to 3.6				-0.5	0.5	μΑ
		$nA = 0.3V$, 3.3V, nB_0 or nB_1 = 0.3V, 3.3V or floating	3.6	-5.0		5.0	-50	50	
I _{NO(OFF)} , I _{NC(OFF)}	Off-Leakage Current of Port nB ₀ and nB ₁	$nA = 0.3V$, 2.4V, nB_0 or nB_1 = 0.3V, 2.4V or floating	2.7	-5.0		5.0	-50	50	nA
, ,		$nA = 0.3V$, 1.65V, nB_0 or nB_1 = 0.3V, 1.65V or floating	1.95	-5.0		5.0	-50	50	
	On Leakage Current of Port 1A and 2A	$nA = 0.3V$, 3.3V, nB_0 or nB_1 = 0.3V, 3.3V or floating	3.6	-5.0		5.0	-50	50	
I _{A(ON)}		$nA = 0.3V$, 2.4V, nB_0 or nB_1 = 0.3V, 2.4V or floating	2.7	-5.0		5.0	-50	50	nA
		$nA = 0.3V$, 1.65V, nB_0 or nB_1 = 0.3V, 1.65V or floating	1.95	-5.0		5.0	-50	50	
		$I_{OUT} = 100$ mA, nB_0 or nB_1 = 0V, 0.7V, 2.0V, 2.7V	2.7		0.35			0.60	
R _{ON}	Switch On Resistance ⁽⁴⁾ See Figure 9	I _{OUT} = 100mA, nB ₀ or nB ₁ = 0V, 0.7V, 1.6V, 2.3V	2.3		0.45			0.75	Ω
		$I_{OUT} = 100 \text{mA}, \text{ nB}_0 \text{ or nB}_1$ = 0.8V	1.65		1.0			3.9	
	O. Basistana Matakian	100 m A . D . m . D	2.7		0.040			0.075	
ΔR_{ON}	On Resistance Matching Between Channels ⁽⁵⁾	I _{OUT} = 100mA, nB ₀ or nB ₁ = 0.7V	2.3		0.040	_		0.080	Ω
			1.65		0.1				
	,,	$I_{OUT} = 100$ mA, nB_0 or nB_1	2.7					0.25	
R _{FLAT(ON)}	On Resistance Flatness ⁽⁶⁾	$= 0V \text{ to } V_{CC}$	2.3					0.3	Ω
			1.65		0.3				
I _{CC}	Quiescent Supply Current	$V_{IN} = 0V \text{ or } V_{CC}, I_{OUT} = 0A$	3.6	-100		100	-500	500	nA

Notes:

- 4. On resistance is determined by the voltage drop between A and B pins at the indicated current through the switch.
- 5. $\Delta R_{ON} = R_{ONmin}$ measured at identical V_{CC} , temperature, and voltage.
- 6. Flatness is defined as the difference between the maximum and minimum value of R_{ON} over the specified range of conditions.

FSA2267A DC Electrical Characteristics

All typical values are at 25°C unless otherwise specified.

Symbol	Parameter	Conditions	v _{cc}	TA	= +25	o°C	C T _A = -40 to +85°C		
			(V)	Min.	Тур.	Max.	Min.	Max.	
			3.6 to 4.3				1.7		
V_{IH}	Input Voltage High		2.7 to 3.6				1.5		V
			2.3 to 2.7				1.4		
			3.6 to 4.3					0.7	
V_{IL}	Input Voltage Low		2.7 to 3.6					0.5	V
			2.3 to 2.7					0.4	
I _{IN}	Control Input Leakage	$V_{IN} = 0V$ to V_{CC}	2.3 to 4.3				-0.5	0.5	μΑ
		$nA = 0.3V$, 4.0V, nB_0 or nB_1 = 4.0V, 0.3V or floating	4.3	-10.0		10.0	-100	100	
I _{NO(OFF)} , I _{NC(OFF)}	Off-Leakage Current of Port nB ₀ and nB ₁	$nA = 0.3V$, 3.3V, nB_0 or nB_1 = 0.3V, 3.3V or floating	3.6	-5.0		5.0	-50	50	nA
		$nA = 0.3V$, 2.4V, nB_0 or $nB_1 = 0.3V$, 2.4V or floating	2.7	-5.0		5.0	-50	50	
	On Leakage Current of Port 1A and 2A	$nA = 0.3V$, 4.0V, nB_0 or $nB_1 = 0.3V$, 4.0V or floating	4.3	-20.0		20.0	-200	200	
I _{A(ON)}		$nA = 0.3V$, 3.3V, nB_0 or $nB_1 = 0.3V$, 3.3V or floating	3.6	-5.0		5.0	-50	50	nA
		$nA = 0.3V$, 3.3V, nB_0 or nB_1 = 0.3V, 3.3V or floating	2.7	-5.0		5.0	-50	50	
		$I_{OUT} = 100 \text{mA}, \text{ nB}_0 \text{ or nB}_1$ = 0V, 0.7V, 3.6V, 4.3V	4.3		0.35			0.6	
R _{ON}	Switch On Resistance ⁽⁷⁾	$I_{OUT} = 100$ mA, nB_0 or nB_1 = 0V, 0.7V, 2.3V, 3.0V	3.0		0.35			0.6	Ω
V _{IL} I _{IN} I _{NO(OFF)} , I _{NC(OFF)}		$I_{OUT} = 100$ mA, nB_0 or nB_1 = 0V, 0.7V, 2.0V, 2.7V	2.7		0.35			0.6	
		$I_{OUT} = 100 \text{mA}, \text{ nB}_0 \text{ or nB}_1 = 0.8 \text{V}$	1.65		1.0				
			4.3		0.04			0.075	
ΔRoss	On Resistance Matching Between Channels ⁽⁸⁾	$I_{OUT} = 100 \text{mA}, \text{ nB}_0 \text{ or nB}_1 = 0.7 \text{V}$	3.0		0.04			0.075	Ω
AITON	See Figure 10	1001 = 10011111, 1120 01 1121 = 0.1 1	2.7		0.04			0.075	32
			1.65		0.1				
			4.3		0.15			0.25	
RELATIONS	On Resistance	$I_{OUT} = 100$ mA, nB_0 or $nB_1 = 0$ V	3.0		0.15			0.25	Ω
· ·FLAT(ON)	Flatness ⁽⁹⁾	to V _{CC}	2.7		0.15			0.25	32
			1.65		0.3				
I _{CC}	Quiescent Supply Current	$V_{IN} = 0V \text{ or } V_{CC}, I_{OUT} = 0A$	4.3	-100	80	100	-500	500	nA
los-	Increase in I _{CC} per Input $\frac{V_{IN} = 1.8V}{V_{IN} = 2.6V}$	4.3		7.0	10.0		15.0	μA	
'CC1		crease in log per Input			0.5	2.0		7.0	μ/\

Notes

- 7. On resistance is determined by the voltage drop between A and B pins at the indicated current through the switch.
- 8. $\Delta R_{ON} = R_{ONmax} R_{ONmin}$ measured at identical V_{CC} , temperature, and voltage.
- 9. Flatness is defined as the difference between the maximum and minimum value of R_{ON} over the specified range of conditions.

FSA2267 AC Electrical Characteristics

All typical values are at 25°C unless otherwise specified.

Symbol	Parameter	arameter Conditions	V _{CC}	TA	= +25	°C		40 to 5°C	Units	Figure Number
			(V)	Min.	Тур.	Max.	Min.	Max.		
			2.7 to 3.6		30.0	38.0		42.0		
t _{ON}	Turn-On Time	$nB_0 \text{ or } nB_1 = 1.5V,$ $R_1 = 50\Omega, C_1 = 35 \text{ pF}$	2.3 to 2.7		29.0	37.0		40.0	ns	Figure 11
		11 = 0011, 0[= 00 pi	1.65 to 1.95		27.0	35.0		38.0		
			2.7 to 3.6		13.0	16.0		18.0		
t _{OFF}	Turn-Off Time	$nB_0 \text{ or } nB_1 = 1.5V,$ $R_1 = 50\Omega, C_1 = 35 \text{ pF}$	2.3 to 2.7		14.0	18.0		20.0	ns	Figure 11
		NC = 0032, OC = 00 pr	1.65 to 1.95		15.0	21.0		25.0		
			2.7 to 3.6		17.0		2.0			
t _{BBM}	Break-Before- Make Time	reak-Before- nB_0 or $nB_1 = 1.5V$, lake Time $R_1 = 50\Omega$, $C_1 = 35$ pF	2.3 to 2.7		15.0		2.0		ns	Figure 12
	Wake Time	NC = 0032, OC = 00 pr	1.65 to 1.95		12.0		2.0			
		$C_L = 100 \text{ pF}, V_{GEN} = 0V,$ $R_{GEN} = 0\Omega$	2.7 to 3.6		9.0					
Q	Charge Injection	$C_L = 100 \text{ pF}, V_{GEN} = 0V,$ $R_{GEN} = 0\Omega$	2.3 to 2.7		9.0				рC	Figure 14
		$C_L = 100 \text{ pF}, V_{GEN} = 0V,$ $R_{GEN} = 0\Omega$	1.65 to 1.95		9.0					
			2.7 to 3.6		-80.0					
OIRR	Off Isolation	$f = 100kHz$, $R_L = 50\Omega$, $C_L = 5pF$ (Stray)	2.3 to 2.7		-80.0				dB	Figure 13
		(Giray)	1.65 to 1.95		-80.0					
			2.7 to 3.6		-80.0					
Xtalk	Crosstalk	$f = 100kHz$, $R_L = 50\Omega$, $C_L = 5pF$ (Stray)	2.3 to 2.7		-80.0				dB	Figure 13
		(Giray)	1.65 to 1.95		-80.0					
BW	-3db Bandwidth	$R_L = 50\Omega$	1.65 to 3.6		45.0				MHz	Figure 16
THD		$R_L = 32\Omega$, $V_{IN} = 2V_{pk-pk}$, $f = 20Hz$ to $20kHz$	2.7 to 3.6		0.024					
	Total Harmonic Distortion	$R_L = 32\Omega$, $V_{IN} = 1.5V_{pk-pk}$, $f = 20Hz$ to $20kHz$	2.3 to 2.7		0.015				%	Figure 17
		$R_L = 32\Omega$, $V_{IN} = 1.2V_{pk-pk}$, $f = 20Hz$ to $20kHz$	1.65 to 1.95		0.35					

FSA2267A AC Electrical Characteristics

All typical value are at 25°C unless otherwise specified.

Symbol	Parameter	Parameter Conditions		TA	, = +25	s°C		-40 to 5°C	Units	Figure Number
				Min.	Тур.	Max.	Min.	Max.		Nullibei
			3.6 to 4.3		37.0	46.0		48.0		
	Turn-On Time	$nB_0 \text{ or } nB_1 = 1.5V,$	2.7 to 3.6		37.0	50.0		57.0		Figure 11
t _{ON}	Turn-On Time	$R_L = 50\Omega, C_L = 35pF$	2.3 to 2.7		60				ns	Figure 11
			1.65		570					
			3.6 to 4.3		15.0	23.0		25.0		
	Turn Off Time	$nB_0 \text{ or } nB_1 = 1.5V,$	2.7 to 3.6		16.0	30.0		30.0		Figure 11
t _{OFF}	Turn-Off Time	$R_L = 50\Omega$, $C_L = 35pF$	2.3 to 2.7		50.0				ns	Figure 11
			1.65		500					
			3.6 to 4.3		8.0		2.0			
t _{BBM}	Break-Before- Make Time	$nB_0 \text{ or } nB_1 = 1.5V,$ $R_1 = 50\Omega, C_1 = 35pF$	2.7 to 3.6		8.0		2.0		ns	Figure 12
	Wake Time	N_ = 3052, O_ = 33pi	2.3 to 2.7		8.0		2.0			
		$C_L = 100 \text{ pF}, V_{GEN} = 0V,$ $R_{GEN} = 0\Omega$	3.6 to 4.3		24.0					
Q	Charge Injection	C_L = 100 pF, V_{GEN} = 0V, R_{GEN} = 0Ω	2.7 to 3.6		24.0				рC	Figure 14
		C_L = 100 pF, V_{GEN} = 0V, R_{GEN} = 0Ω	2.3 to 2.7		24.0					
			3.6 to 4.3		-75.0					
OIRR	Off Isolation	$f = 100kHz$, $R_L = 50\Omega$, $C_L = 5pF$ (Stray)	2.7 to 3.6		-75.0				dB	Figure 13
		(Giray)	2.3 to 2.7		-75.0					
			3.6 to 4.3		-70.0					
Xtalk	Crosstalk	$f = 100kHz$, $R_L = 50\Omega$, $C_L = 5pF$ (Stray)	2.7 to 3.6		-70.0				dB	Figure 13
		(Girdy)	2.3 to 2.7		-70.0					
BW	-3db Bandwidth	$R_L = 50\Omega$	2.3 to 4.3		45.0				MHz	Figure 16
		$R_L = 32\Omega$, $V_{IN} = 2V_{pk-pk}$, $f = 20Hz$ to $20kHz$	3.6 to 4.3		0.02					
THD	Total Harmonic Distortion	$R_L = 32\Omega$, $V_{IN} = 1.5V_{pk-pk}$, $f = 20Hz$ to $20kHz$	2.7 to 3.6		0.02				%	Figure 17
		$R_L = 32\Omega$, $V_{IN} = 1.2V_{pk-pk}$, $f = 20Hz$ to $20kHz$	2.3 to 2.7		0.02					

Capacitance

Symbol	Parameter	Conditions	V _{CC} (V)	TA	= +25	S°C		-40 to 5°C	Units	Figure Number
				Min.	Тур.	Max.	Min.	Max.		Number
C _{IN}	Control Pin Input Capacitance	f = 1Mhz	0.0		1.5				pF	Figure 15
C _{OFF}	B Port Off Capacitance	f = 1Mhz	3.3		30.0				pF	Figure 15
C _{ON}	A Port On Capacitance	f = 1Mhz	3.3		126				pF	Figure 15

Typical Characteristics

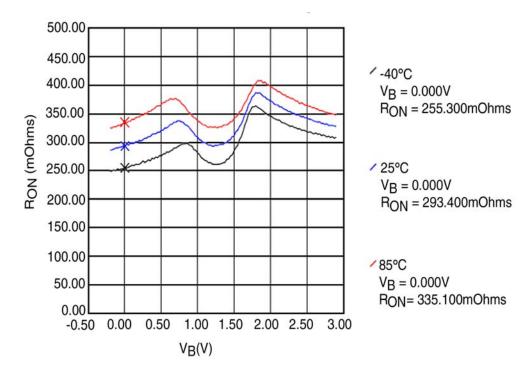


Figure 9. R_{ON} at 2.7V for FSA2267

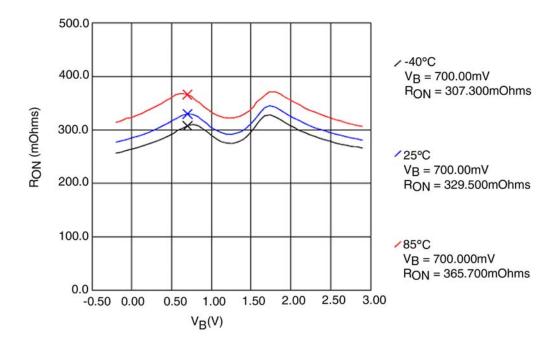
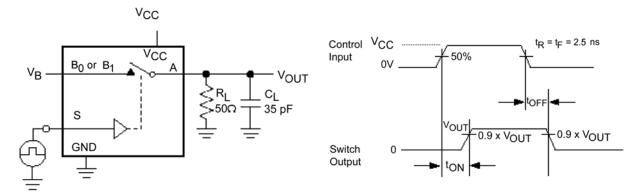
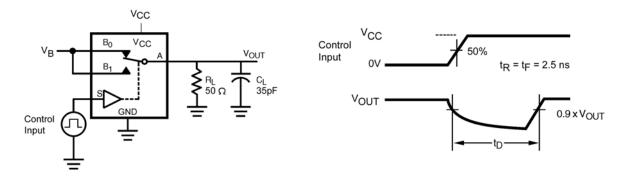



Figure 10. R_{ON} at 2.7V for FSA2267A


AC Loading and Waveforms

C_L includes Fixture and Stray Capacitance.

Logic input waveforms are inverted for switches with opposite logic sense.

Figure 11. Turn-On/Turn-Off Timing

C_L Includes Fixture and Stray Capacitance

Figure 12. Break-Before-Make Timing

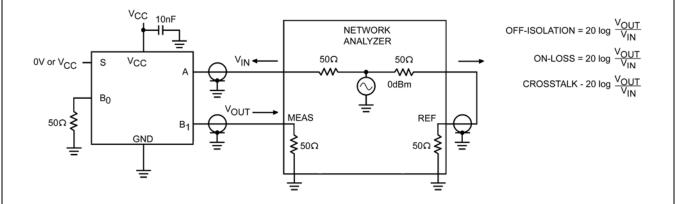


Figure 13. Off Isolation and Crosstalk

AC Loading and Waveforms (Continued)

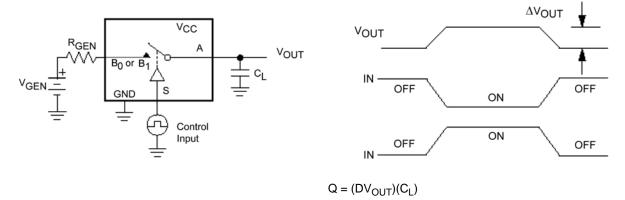


Figure 14. Charge Injection

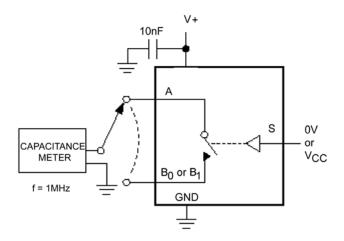


Figure 15. On/Off Capacitance Measurement Setup

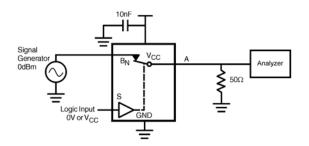


Figure 16. Bandwidth

Figure 17. Harmonic Distortion

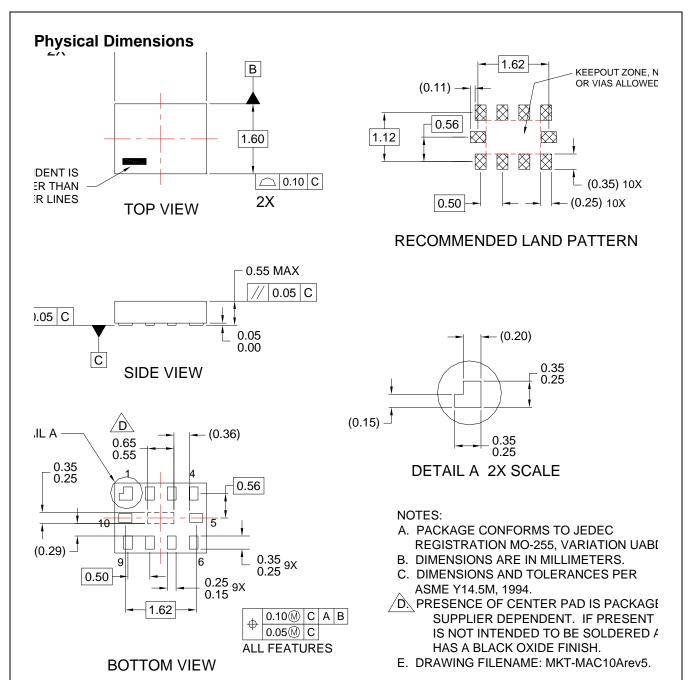


Figure 18. 10-Lead, MicroPak™, 1.6 x 2.1mm

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in

Physical Dimensions

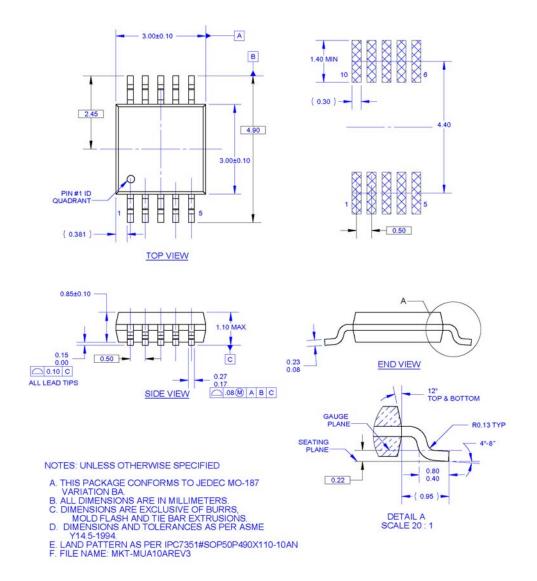


Figure 19. Pb-Free, 10-Lead, Molded Small Outline Package (MSOP), JEDEC MO-187, 3.0mm Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.