SGM7229 High-Speed USB 2.0 (480Mbps) DPDT Analog Switch

GENERAL DESCRIPTION

The SGM7229 is a high-speed, low-power double-pole/ double-throw (DPDT) analog switch that operates from a single 1.8V to 5.5V power supply.

The SGM7229 is designed for the switching of high-speed USB 2.0 signals in handset and consumer applications, such as cell phones, digital cameras, and notebooks with hubs or controllers with limited USB I/Os.

The SGM7229 has low bit-to-bit skew and high channel-to-channel noise isolation, and is compatible with various standards, such as high-speed USB 2.0 (480Mbps). Each switch is bidirectional and offers little or no attenuation of the high-speed signals at the outputs. Its bandwidth is wide enough to pass high-speed USB 2.0 differential signals (480Mbps) with good signal integrity.

The SGM7229 contains special circuitry on the D+/Dpins which allows the device to withstand a V_{BUS} short to D+ or D- when the USB devices are either powered off or powered on.

The SGM7229 is available in Green MSOP-10 and UTQFN-1.8 \times 1.4-10L packages. It operates over an ambient temperature range of -40°C to +85°C.

FEATURES

- Supply Voltage Range: 1.8V to 5.5V
- On-Resistance: 5.5Ω (TYP) at 3V
- Fast Switching Times:
 t_{ON} = 40ns
 t_{OFF} = 15ns
- Crosstalk: -20dB at 250MHz
- Off-Isolation: -22dB at 250MHz
- Rail-to-Rail Input and Output Operation
- Break-Before-Make Switching
- -40°C to +85°C Operating Temperature Range
- Available in Green UTQFN-1.8×1.4-10L and MSOP-10 Packages

APPLICATIONS

Route Signals for USB 2.0 MP3 and Other Personal Media Players Digital Cameras and Camcorders Portable Instrumentation Set-Top Box PDAs

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
	UTQFN-1.8×1.4-10L	-40°C to +85°C	SGM7229YUWQ10G/TR	NDXX	Tape and Reel, 3000
SGM7229	MSOP-10	-40°C to +85°C	SGM7229YMS10G/TR	SGM7229 YMS10 XXXXX	Tape and Reel, 4000

MARKING INFORMATION

NOTE: XX = Date Code. XXXXX = Date Code, Trace Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

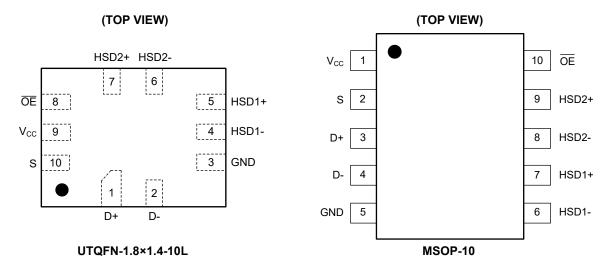
V _{CC} to GND	0V to 6V
Analog, Digital Voltage Range	0.3V to V _{CC} + 0.3V
Continuous Current HSDn or Dn	±50mA
Peak Current HSDn or Dn	±100mA
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	2500V
MM	400V
CDM	1000V

RECOMMENDED OPERATING CONDITIONS

Operating Temperature Range-40°C to +85°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

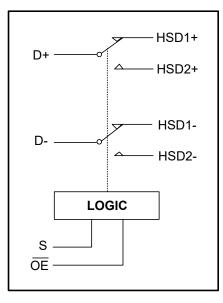

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATIONS



PIN DESCRIPTION

PIN		NAME	FUNCTION
UTQFN-1.8×1.4-10L	MSOP-10	NAME	FUNCTION
1	3	D+	USB Data Bus.
2	4	D-	USB Data Bus.
3	5	GND	Ground.
4	6	HSD1-	Multiplexed Source Input.
5	7	HSD1+	Multiplexed Source Input.
6	8	HSD2-	Multiplexed Source Input.
7	9	HSD2+	Multiplexed Source Input.
8	10	ŌĒ	Output Enable.
9	1	V _{CC}	Power Supply.
10	2	S	Select Input.

SGM7229

BLOCK DIAGRAM

FUNCTION TABLE

ŌĒ	s	HSD1+, HSD1-	HSD2+, HSD2-
0	0	ON	OFF
0	1	OFF	ON
1	×	OFF	OFF

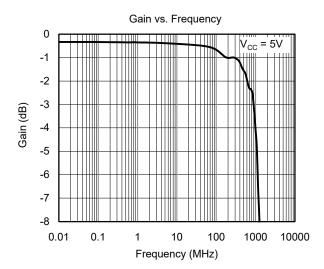
NOTE: Switches shown for logic "0" input.

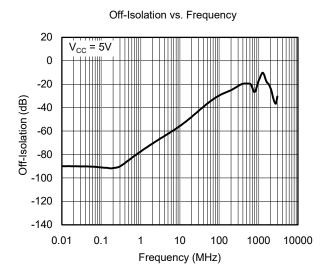
ELECTRICAL CHARACTERISTICS

(V_{CC} = 3.3V, Full = -40°C to +85°C, typical values are at T_A = +25°C, unless otherwise noted.)

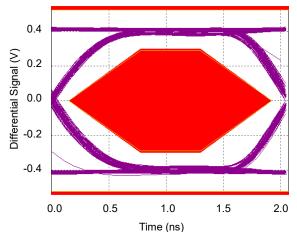
PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog I/O Voltage (HSD1+, HSD1-, HSD2+, HSD2-)	V _{IS}		Full	0		V _{cc}	V
(1301+, 1301-, 1302+, 1302-)		$V_{\rm CC} = 3V, V_{\rm IS} = 0V \text{ to } 0.4V,$	+25℃		5.5	7	
On-Resistance	R _{on}	$I_D = 8mA$, Test Circuit 1	Full		0.0	8	Ω
		$V_{CC} = 3V, V_{IS} = 0V \text{ to } 0.4V,$	+25°C		0.2	0.75	
On-Resistance Match between Channels	ΔR_{ON}	$I_D = 8mA$, Test Circuit 1	Full			0.9	Ω
		$V_{CC} = 3V, V_{IS} = 0V \text{ to } 1V,$	+25°C		2	3	
On-Resistance Flatness	$R_{FLAT(ON)}$	$I_D = 8mA$, Test Circuit 1	Full			3.5	Ω
		$V_{CC} = 0V, V_{D} = 0V \text{ to } 3.6V,$	+25°C		0.1	0.3	
Power Off Leakage Current (D+, D-)	I _{OFF}	$V_{\rm S}, V_{\overline{\rm OE}} = 0V \text{ or } 3.6V$	Full			0.5	μA
			+25°C		2	3	
Increase in I_{cc} per Control Voltage	ICCT	V_{CC} = 3.6V, V_{S} or $V_{\overline{OE}}$ = 1.8V	Full			3.5	μA
	I _{HSD2(OFF)} ,	V _{CC} = 3.6V, V _{IS} = 3.3V/0.3V,	+25°C		0.1	0.3	μA
Source Off Leakage Current	I _{HSD1(OFF)}	$V_{\rm D} = 0.3 {\rm V}/3.3 {\rm V}$	Full			0.5	
	I _{HSD2(ON)} ,	$I_{HSD2(ON)}$, $V_{CC} = 3.6V$, $V_{IS} = 3.3V/0.3V$,	+25°C		0.1	0.3	μA
Channel On Leakage Current	I _{HSD1(ON)}	$V_D = 3.3V/0.3V$ or floating	Full			0.5	
DIGITAL INPUTS			•			•	
Input High Voltage	V _{IH}		Full	1.5			V
Input Low Voltage	V _{IL}		Full			0.4	V
Input Lookage Current		$V_{S}, V_{\overline{OE}} = 0V \text{ or } V_{CC}$	+25°C		0.1	0.3	
Input Leakage Current	I _{IN}		Full			0.5	μΑ
DYNAMIC CHARACTERISTICS							
Turn-On Time	t _{on}	$V_{IS} = 0.8V, R_{L} = 50\Omega,$	+25°C		40		ns
Turn-Off Time	t_{OFF}	C_L = 10pF, Test Circuit 2	+25°C		15		ns
Break-Before-Make Time Delay	t _D	$V_{IS} = 0.8V, R_L = 50\Omega,$ $C_L = 10pF$, Test Circuit 3	+25°C		20		ns
Propagation Delay	t _{PD}	$R_{L} = 50\Omega, C_{L} = 10pF$	+25°C		0.5		ns
Off Isolation	O _{ISO}	Signal = 0dBm, R _L = 50Ω, f = 250MHz, Test Circuit 4	+25°C		-22		dB
Channel-to-Channel Crosstalk	X _{TALK}	Signal = 0dBm, R _L = 50Ω, f = 250MHz, Test Circuit 5	+25°C		-20		dB
-3dB Bandwidth	BW	Signal = 0dBm, $R_L = 50\Omega$, $C_L = 5pF$, Test Circuit 6	+25°C		850		MHz
Channel-to-Channel Skew	t _{skew}	$R_L = 50\Omega, C_L = 10pF$	+25°C		0.5		ns
Charge Injection Select Input to Common I/O	Q	$V_G = GND, C_L = 1nF, R_G = 0\Omega, Q = C_L \times V_{OUT}$, Test Circuit 7	+25°C		2		рС
HSD+, HSD-, D+, D- On-Capacitance	C	f = 1MHz	+25°C		6		~F
	Con	f = 30MHz	+25°C		6		pF

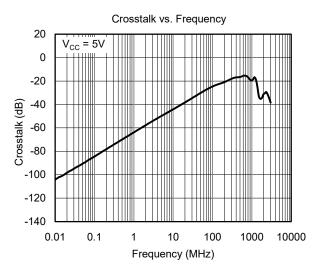
ELECTRICAL CHARACTERISTICS (continued)

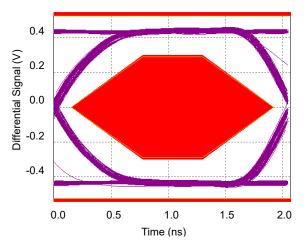

(V_{CC} = 5V, Full = -40°C to +85°C, typical values are at T_A = +25°C, unless otherwise noted.)


PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog I/O Voltage (HSD1+, HSD1-, HSD2+, HSD2-)	V _{IS}		Full	0		Vcc	V
On-Resistance	R _{on}	$V_{IS} = 0V$ to 0.4V,	+25°C		4.5	5.5	0
	NON	I _D = 8mA, Test Circuit 1	Full			6	
On-Resistance Match between Channels	ΔR_{ON}	$V_{IS} = 0V$ to 0.4V,	+25°C		0.2	0.65	Ω
		$I_D = 8mA$, Test Circuit 1	Full			0.7	
On-Resistance Flatness	R _{FLAT(ON)}	$V_{IS} = 0V$ to 1V,	+25°C		0.5	0.75	Ω
	(,	I _D = 8mA, Test Circuit T	Full				_
Power Off Leakage Current (D+, D-)	I _{OFF}	$V_{CC} = 0V, V_D = 0V \text{ to } 5.5V,$	+25°C		0.1		μA
		$v_{\rm S}, v_{\rm OE} = 00015.50$					
Increase in I_{CC} per Control Voltage	ICCT	$V_{CC} = 5.5V, V_{S} \text{ or } V_{\overline{OE}} = 1.8V$			14	6 0.65 Ω 0.7 Ω 0.75 Ω 0.9 Ω 0.3 μA 0.5 μA 0.3 μA 0.5 μA 0.3 μA 0.5 μA 0.5	
					0.1		
Source Off Leakage Current	I _{HSD2(OFF)} , I _{HSD1(OFF)}	$V_{CC} = 5.5V, V_{IS} = 4.5V/1V,$ $V_{D} = 1V/4.5V$	$\begin{array}{ c c c c c c c c c c } \hline Full & 0 & V_{CC} & V \\ \hline Wa no constraint & Full & 0 & V_{CC} & V \\ \hline Wa no constraint & Full & 0 & 0 & 0 & 0 \\ \hline Wa no constraint & Full & 0 & 0 & 0 & 0 & 0 \\ \hline Wa no constraint & Full & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline Wa no constraint & Full & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$				
	HSD1(OFF)	VD-10/4.3V	-		0.1		_
Channel On Leakage Current	I _{HSD2(ON)} , I _{HSD1(ON)}	$V_{CC} = 5.5V, V_{IS} = 4.5V/1V,$ $V_{D} = 4.5V/1V$ or floating			0.1		μA
DIGITAL INPUTS	-HSD I(ON)	i i i i i i i i i i i i i i i i i i i	Full			0.5	
Input High Voltage	VIH	V _{CC} = 5.5V	Eull	1 0		1	V
Input Low Voltage	V _{IH} V _{IL}	$V_{CC} = 5.5V$ $V_{CC} = 5.5V$		1.0		0.6	-
	VIL				0.1		v
Input Leakage Current	I _{IN}	$V_{CC} = 5.5V,$ $V_{S}, V_{\overline{OE}} = 0V \text{ or } V_{CC}$			0.1		μA
DYNAMIC CHARACTERISTICS							
Turn-On Time	t _{on}	$V_{12} = 0.8 V_{12} R_{12} = 500$	+25°C		40		ns
Turn-Off Time	t _{OFF}	$C_L = 10 \text{pF}$, Test Circuit 2			15		ns
Break-Before-Make Time Delay	t _D	$V_{IS} = 0.8V, R_L = 50\Omega,$ $C_L = 10pF, Test Circuit 3$	+25°C		20		ns
Propagation Delay	t _{PD}	R _L = 50Ω, C _L = 10pF	+25°C		0.5		ns
Off Isolation	O _{ISO}	Signal = 0dBm, R _L = 50Ω, f = 250MHz, Test Circuit 4	+25°C		-22		dB
Channel-to-Channel Crosstalk	X _{TALK}	Signal = 0dBm, R _L = 50Ω, f = 250MHz, Test Circuit 5	+25°C		-20		dB
-3dB Bandwidth	BW	Signal = 0dBm, $R_L = 50\Omega$, $C_L = 5pF$, Test Circuit 6	+25°C		850		MHz
Channel-to-Channel Skew	t _{skew}	$R_L = 50\Omega, C_L = 10pF$	+25°C		0.5		ns
Charge Injection Select Input to Common I/O	Q		+25℃		2		рС
HSD+, HSD-, D+, D- On-Capacitance	Con	f = 1MHz	+25°C		6		nF
	CON	f = 30MHz	+25°C		6		
POWER REQUIREMENTS	1				1	1	_
Power Supply Range	Vcc		Full	1.8		5.5	V
Power Supply Current	Icc	V _{cc} = 5.5V,	+25°C		0.1	0.3	μA
· · · · · · · · · · · · · · · · · · ·	100	V_S , $V_{\overline{OE}} = 0V$ or V_{CC}	Full			0.5	P''

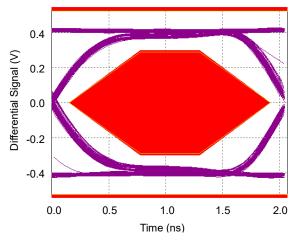
SGM7229


High-Speed USB 2.0 (480Mbps) DPDT Analog Switch

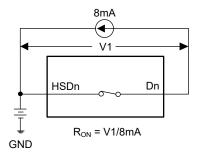

TYPICAL PERFORMANCE CHARACTERISTICS



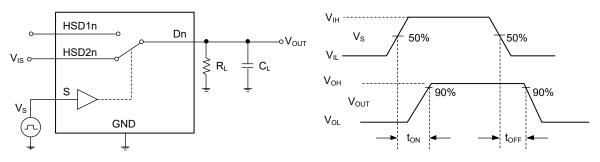
Eye Pattern: 480Mbps USB 2.0 Signal with Switch NO Path



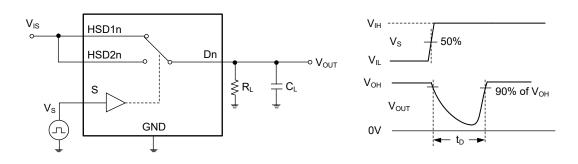
Eye Pattern: 480Mbps USB 2.0 Signal with No Switch (Through Path)

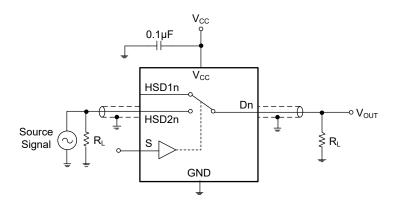


Eye Pattern: 480Mbps USB 2.0 Signal with Switch NC Path

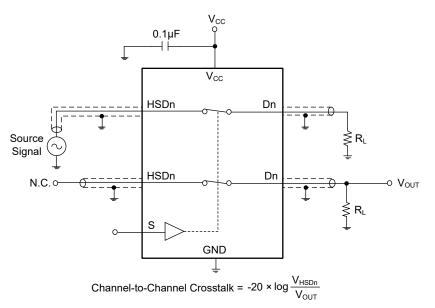


SGM7229

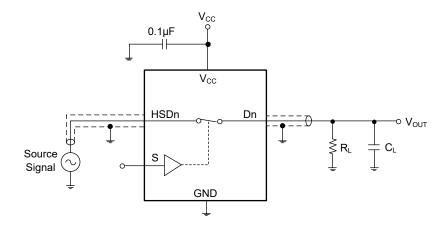

TEST CIRCUITS

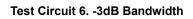

Test Circuit 1. On-Resistance

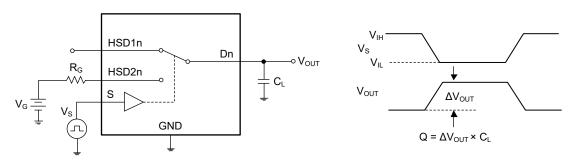
Test Circuit 2. Switching Times (ton, toff)

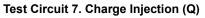


Test Circuit 3. Break-Before-Make Time Delay (t_D)




Test Circuit 4. Off Isolation


TEST CIRCUITS (continued)



Test Circuit 5. Channel-to-Channel Crosstalk

High-Speed USB 2.0 (480Mbps) DPDT Analog Switch

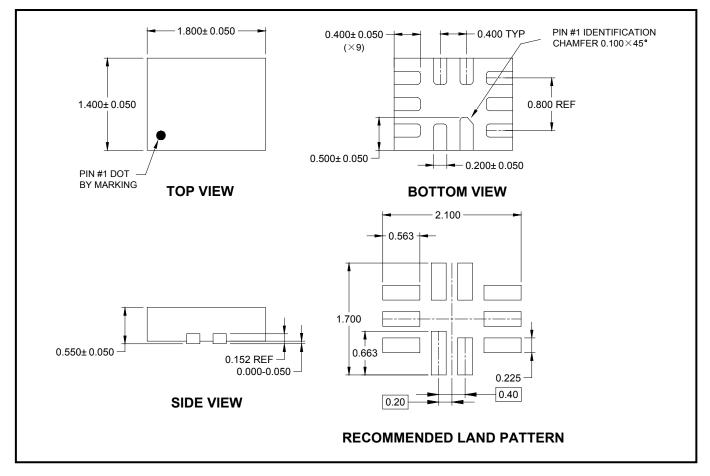
APPLICATION NOTES

Meeting USB 2.0 V_{BUS} Short Requirements Power-Off Protection

For a V_{BUS} short circuit, the switch is expected to withstand such a condition for at least 24 hours. The SGM7229 has specially designed circuitry which prevents unintended signal bleeding through as well as guarantees system reliability during a power-down, over-voltage condition. The protection has been added to the common pins (D+, D-).

Power-On Protection

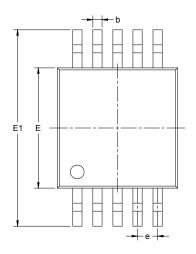
The USB 2.0 specification also notes that the USB device should be capable of withstanding a V_{BUS} short during transmission of data. This modification works by limiting current flow back into the V_{CC} rail during the over-voltage event so current remains within the safe operating range.

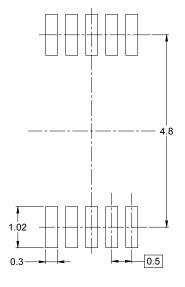

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

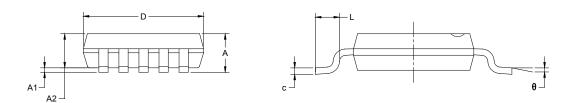
Changes from Original (DECEMBER 2018) to REV.A

Changed from product preview to production data......All

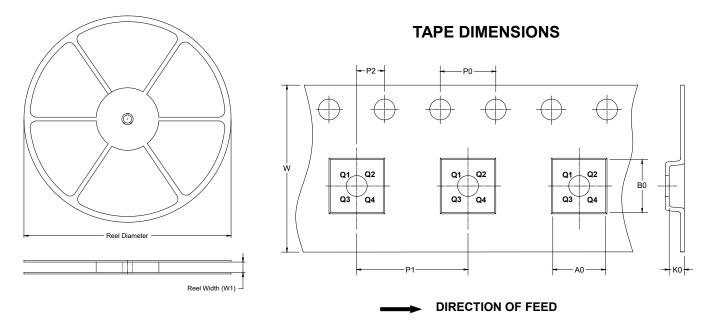

PACKAGE OUTLINE DIMENSIONS UTQFN-1.8×1.4-10L



NOTE: All linear dimensions are in millimeters.


PACKAGE OUTLINE DIMENSIONS

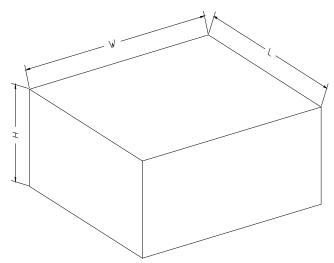
MSOP-10


RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	-	nsions meters	Dimensions In Inches		
	MIN	MIN MAX		MAX	
A	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.180	0.280	0.007	0.011	
С	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
E	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187	0.199	
е	0.500	BSC	0.020	BSC	
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
UTQFN-1.8×1.4-10L	7"	9.0	1.75	2.10	0.70	4.0	4.0	2.0	8.0	Q1
MSOP-10	13″	12.4	5.20	3.30	1.20	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width Height (mm) (mm)		Pizza/Carton	
7" (Option)	368	227	224	8	
7"	442	410	224	18]_
13″	386	280	370	5	DD0002