SGM61410 1.2MHz, 600mA, 45V Synchronous Step-Down Converter

GENERAL DESCRIPTION

The SGM61410 is a high frequency, synchronous step-down converter. It provides 600mA current output with current mode control for fast loop response and compensation inside.

The wide 5V to 45V input voltage range accommodates a variety of step-down applications, including those in an automotive input environment. A 14 μ A sleep mode quiescent current makes SGM61410 the ideal solution for battery-powered applications. High power conversion efficiency over a wide load range is achieved by scaling down the switching frequency at light load condition to reduce the switching and gate driving losses.

The frequency fold-back helps prevent inductor current runaway during startup and thermal shutdown provides reliable, fault tolerant operation. By switching at 1.2MHz, the SGM61410 is able to prevent EMI (Electromagnetic Interference) noise problems, such as those found in AM radio, ADSL and PLC applications.

SGM61410 is available in Green SOT-23-6 package. It operates over an ambient temperature range of -40°C to +125°C.

TYPICAL APPLICATION

FEATURES

- Wide 5V to 45V Operating Input Voltage Range
- Low Quiescent Current: 14µA (TYP)
- 0.8µA (TYP) Shutdown Current
- Current Output up to 600mA
- Internal Synchronous Rectifier
- 1.2MHz Switching Frequency
- Compensation Inside and Internal Soft-Start
- Up to 95% Efficiency at 12V/400mA
- 0.8V to 20V Adjustable Output Voltage
- Current Limit and Short-Circuit Protection
- Output Over-Voltage Protection and Thermal Shutdown
- Available in Green SOT-23-6 Package
- -40°C to +125°C Operating Temperature Range

APPLICATIONS

High Voltage Power Conversion Automotive Systems Industrial Power Systems Distributed Power Systems Battery Powered Systems Power Meter

Figure 1. Typical Application Circuit

SGM61410

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION	
SGM61410	SOT-23-6	-40°C to +125°C	SGM61410XN6G/TR	MPEXX	Tape and Reel, 3000	

MARKING INFORMATION

NOTE: XX = Date Code.

YYY X X Date Code - Week Date Code - Year Serial Number

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Supply Input Voltage	50V
EN Pin	50V
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C

RECOMMENDED OPERATING CONDITIONS

Supply Input Voltage Range5V to 45V Operating Junction Temperature Range-40°C to +125°C Operating Ambient Temperature Range-40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	BOOT	Bootstrap. This pin is used to provide a drive voltage, higher than the input voltage, to the topside power switch. Place a 0.47μ F boost capacitor (C _{BOOT}) as close as possible to the IC. Do not place a resistor in series with this pin.
2	GND	Ground. Voltage reference for the regulated output voltage. Requires special layout considerations.
3	FB	Feedback Pin. Set the output voltage. The SGM61410 regulates the FB pin to 0.8V. Connect the feedback resistor divider tap to this pin.
4	EN	Enable Pin. Pull V _{EN} above 1.2V to turn the device ON; pull V _{EN} below 0.4V to turn the device OFF. For automatic enable, connect to VIN pin using a $100k\Omega$ resistor.
5	VIN	Supply Voltage. The SGM61410 operates from a 5V to 45V unregulated input voltage. Requires C_{IN} to prevent large voltage spikes from appearing at the input.
6	SW	Switching Node. The SW pin is the output of the internal power switches. Connect this pin to the inductor and boost capacitor. This node should be kept small on the PCB for good performance.

ELECTRICAL CHARACTERISTICS

(V_{IN} = 18V, typical values are at T_A = +25°C, unless otherwise noted.)

PARAMETER		SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Supply Input Vo	ltage		V _{IN}		5		45	V
Under-Voltage I	_ockout T	hreshold	V _{UVLO}			4.6		V
Under-Voltage I Hysteresis	_ockout T	hreshold	V _{UVLO_HYS}			350		mV
VIN Quiescent Current	Shutdown		$V_{EN/UV} = 0V$		0.8			
VIN Quescent	Junem	Sleep Mode	IQ	$V_{EN/UV}$ = 2V, Not Switching, $V_{IN} \le 36V$		$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
Feedback Refer	ence Vol	tage	V _{FB}	V _{IN} = 6V		0.800		V
Feedback Pin Ir	nput Curre	ent	I _{FB}	V _{FB} = 1V		5		nA
Minimum On-Ti	me		t _{on}	I _{LOAD} = 600mA		100		ns
Switching Frequ	Switching Frequency		f _{sw}			1.2		MHz
Top Power NMOS Current Limit		I _{LIM}			1.2		А	
Top Power NMOS On-Resistance		Р	I _{LOAD} = 0.1A		700		mΩ	
Bottom Power N	IMOS On	-Resistance	RDSON	I _{LOAD} = 0.1A		300		mΩ
Logic-High Voltage		V _{ENH}	V _{EN} Rising	1.2			V	
EN MIESHOID	Logic-Lo	ow Voltage	V _{ENL}	V _{EN} Falling			0.4	v
EN Threshold, H	lysteresis	6				120		mV
Enable Leakage	e Current		I _{EN}			0.1		μA
	ltaga Thr	abald	V	OVP Rising		0.892		V
Output Over-vo	Output Over-Voltage Threshold		VOUT_OV	OVP Falling		0.844		v
Thermal Shutdo	wn					150		°C
Thermal Shutdo	wn Hyste	resis				20		°C

TYPICAL PERFORMANCE CHARACTERISTICS

 T_A = +25°C, V_{IN} = 18V, L = 22µH and C_{OUT} = 10µF, unless otherwise noted.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 T_A = +25°C, V_{IN} = 18V, L = 22µH and C_{OUT} = 10µF, unless otherwise noted.

Time (1µs/div)

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 T_A = +25°C, V_{IN} = 18V, L = 22µH and C_{OUT} = 10µF, unless otherwise noted.

Time (100µs/div)

FUNCTIONAL BLOCK DIAGRAM

Figure 2. SGM61410 Block Diagram

DETAILED DESCRIPTION

Floating Driver and Bootstrap Charging UVLO Protection

The floating power MOSFET driver is powered by an external bootstrap capacitor. This floating driver has its own UVLO protection. This UVLO's rising threshold is about 4.6V with a threshold of about 350mV. During this UVLO, the reference voltage of the controller is reset to zero. When the UVLO is removed, the controller follows soft-start process.

The bootstrap capacitor is charged and regulated to about 5V by the dedicated internal bootstrap regulator. When the voltage between BOOT and SW nodes is lower than its regulation, a PMOS pass transistor connected from VIN to BOOT is turned on. The charging current path is from VIN, BOOT and then to SW. External circuit should provide enough voltage headroom to facilitate the charging.

Enable

The voltage on the EN pin controls the ON or OFF operation of SGM61410. A voltage of less than 0.4V shuts down the device, while a voltage of more than 1.2V is required to start the regulator. The EN pin is an input and cannot be left open or floating. The simplest way to enable the operation of the SGM61410 is to connect the EN pin to VIN pin using 100k Ω resistor. This allows self-startup of the SGM61410 when VIN is within the operating range.

An external logic signal can also be used to drive EN input for system sequencing and protection. Kindly note that, the EN pin voltage should never be higher than V_{IN} + 0.3V. So it's not recommended to apply EN voltage when V_{IN} is 0V.

Output Over-Voltage Protection (OVP)

The SGM61410 also includes an over-voltage comparator that monitors the FB pin exceeding 110%. When the voltage at the FB pin exceeds the over-voltage threshold (V_{OUT_OV}), SGM61410 will stop PWM switching, i.e. both high-side and low-side switches will be turned off.

In most cases, the error amplifier will be able to maintain regulation since the synchronous output stage has excellent sink and source capability. However the error amplifier and its regulation voltage clamp are not effective when the FB pin is disconnected or when the output is shorted to the input supply. When the FB pin is disconnected from the feedback resistor divider, a tiny internal current source will force the voltage at the FB pin to rise above $V_{OUT OV}$ and disable the regulator, the load from being significantly preventing over-voltage. If a higher external voltage is accidently shorted to the SGM61410's output, V_{FB} will rise above the over-voltage threshold, triggering an OVP event and thus protecting the low-side switch. In either case, if the conditions causing the over-voltage are corrected, the regulator will automatically recover.

Output Voltage Programming

Output voltage can be set by feeding back the output to the FB pin with a resistor divider network. In the application circuit shown in Figure 1. The resistor divider network includes R_1 and R_2 . Usually, a design is started by picking a fixed R_2 value and calculating the required R_1 with equation below.

$$V_{out} = V_{REF} \times \left(1 + \frac{R_1}{R_2}\right)$$

where an internal reference voltage $V_{REF} = 0.8V$ (TYP).

To keep the operating quiescent current to a minimum, it is recommended that R_2 be set in the range of $10k\Omega$ to $100k\Omega$.

Thermal Shutdown

The SGM61410 provides an internal thermal shutdown to protect the device when the junction temperature exceeds +150°C. Both HS and LS FETs stop switching in thermal shutdown. Once the die temperature falls below +130°C, the device reinitiates the power up sequence controlled by the internal soft-start circuitry.

Component Selection

f _{sw} (MHz)	V _{OUT} (V)	L (µH)	C _{ουτ} (μF)	C _{ιν} (μF)	С _{воот} (µF)	R ₁ (kΩ)	R ₂ (kΩ)
	3.3	10	22	10	0.47	31.2	10
1.2	5	22	22	10	0.47	52.5	10
	12	33	22	10	0.47	140	10

PACKAGE OUTLINE DIMENSIONS

SOT-23-6

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimer In Milli	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950 BSC		0.037 BSC		
e1	1.900 BSC		0.075 BSC		
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOT-23-6	7″	9.5	3.17	3.23	1.37	4.0	4.0	2.0	8.0	Q3

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
7" (Option)	368	227	224	8
7"	442	410	224	18