SGM2551A, SGM2551C Precision Adjustable Current Limited Power Distribution Switches

GENERAL DESCRIPTION

The SGM2551A and SGM2551C power distribution switches are intended for applications where precision current limiting is required or heavy capacitive loads and short circuits are encountered and provide up to 1.5A of continuous load current. These devices offer a programmable current limit threshold between 100mA and 1.7A via an external resistor. The power switch rise and fall times are controlled to minimize current surges during turn on/off. The SGM2551C has quick auto-discharge function in disable status.

SGM2551A and SGM2551C devices limit the output current to a safe level by using a constant-current mode when the output load exceeds the current limit threshold. An internal reverse-voltage comparator disables the power switch when the output voltage is driven higher than the input to protect devices on the input side of the switch.

SGM2551A and SGM2551C are available in the Green TDFN-2×2-6L and SOT-23-5 packages. They are rated over the -40°C to +85°C temperature range.

FEATURES

- Up to 1.5A Maximum Load Current
- Meets USB Current Limiting Requirements
- Adjustable Current Limit: 100mA to 1.7A
- Fast Over-Current Response: 2µs
- 90mΩ High-side MOSFET
- No Reverse Leakage Current of High-side MOSFET
- Reverse Input-Output Voltage Protection
- Operating Range: 2.5V to 5.5V
- Built-in Soft-Start Function
- Quick Auto-Discharge in Disable Status (SGM2551C)
- Available in the Green TDFN-2×2-6L and SOT-23-5 Packages

APPLICATIONS

USB Ports/Hubs Digital TV Set-Top Boxes VOIP Phones

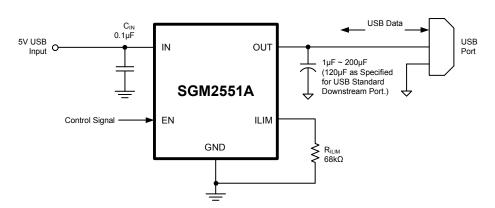


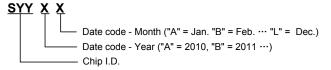
Figure 1. Typical Application as USB Power Switch

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM2551A	TDFN-2×2-6L	-40℃ to +85℃	SGM2551AYTDI6G/TR	SK5 XXXX	Tape and Reel, 3000
SGM2551A	SOT-23-5	-40℃ to +85℃	SGM2551AYN5G/TR	SKEXX	Tape and Reel, 3000
COM2554C	TDFN-2×2-6L	-40℃ to +85℃	SGM2551CYTDI6G/TR	SL2 XXXX	Tape and Reel, 3000
SGM2551C	SOT-23-5	-40℃ to +85℃	SGM2551CYN5G/TR	SLEXX	Tape and Reel, 3000

NOTE: XX = Date Code, XXXX = Date Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.


ABSOLUTE MAXIMUM RATINGS

VIN, VOUT, EN and ILIM to GND	0.3V to 6V
Continuous Output Current	Internally Limited
ILIM Source Current	1mA
Package Thermal Resistance	
TDFN-2×2-6L, θ _{JA}	160°C/W
SOT-23-5, θ _{JA}	250°C/W
Junction Temperature	150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	260°C
ESD Susceptibility	
HBM	2000V
MM	200V

RECOMMENDED OPERATING CONDITIONS

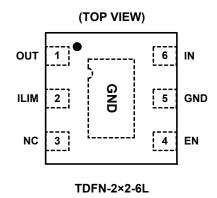
Input Voltage Range	2.5V to 5.5V
Enable Voltage Range	
Continuous Output Current Range	
Current Limit Threshold Resistor Range	
Minimum Input Decoupling Capacitance	0.1µF
Operating Temperature Range	

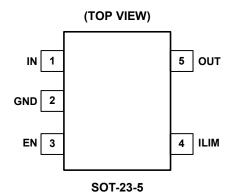
MARKING INFORMATION

For example: SKEFA (2015, January)

OVERSTRESS CAUTION

Stresses beyond those listed may cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational section of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.


ESD SENSITIVITY CAUTION


This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time.

PIN CONFIGURATIONS

PIN DESCRIPTION

PIN		МАМЕ	FUNCTION			
TDFN-2×2-6L	SOT-23-5	NAME	FUNCTION			
1	5	OUT	Power Switch Output.			
2	4	ILIM	ILIM Pin. External resistor used to set current limit threshold; recommended $20k\Omega \le R_{ILIM} \le 387k\Omega$. $I_{LIM} = \frac{39}{R_{ILIM} + 3}(A)$ where R_{ILIM} is in $k\Omega$.			
3	_	NC	No Internal Connection.			
4	3	EN	Enable Input. Logic high turns on power switch.			
5	2	GND	Ground. Connect externally to exposed pad.			
6	1	IN	Input Voltage. Connect a 0.1µF or greater ceramic capacitor from IN to GND as close to the IC as possible.			
Exposed Pad	_	GND	Internally connected to GND; used to heat-sink the part to the circul board traces. Connect exposed pad to GND pin externally.			

ELECTRICAL CHARACTERISTICS

 $(V_{IN} = 5V, T_A = +25^{\circ}C, unless otherwise noted.)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
POWER SWITCH							
High-side MOSFET On Resistance	R _{DS(ON)}				90	130	mΩ
Outro A Disc. Time		V _{IN} = 5.5V 1.8	1.8	3.5			
Output Rise Time	t _R	V _{IN} = 2.5V	$C_L = 1 \mu F, R_L = 100 \Omega,$		1.1	2.5	ms
Outrout Fall Times		V _{IN} = 5.5V	Figure 2		0.3	0.4	
Output Fall Time	t _F	V _{IN} = 2.5V			0.3	0.4	
ENABLE INPUT							
Logic High of Enable Pin	V _{IH}			1.4			V
Logic Low of Enable Pin	V _{IL}					0.3	V
Input Current	I _{EN}	V _{EN} = 5.5V			0.01	1	μA
Turn-On Time	t _{ON}	C = 4E D = 4	1000 Figure 2		3	5	ms
Turn-Off Time	t _{OFF}	$C_L = 1\mu F, R_L = 1$	100Ω, Figure 2		1.6	2.5	ms
CURRENT LIMIT					•		
Current Limit Threshold (Maximum DC output current I_{OUT} delivered to load), OUT connected to GND through 4Ω .	I _{LIM}	$V_{IN} = 3V$, $R_{ILIM} = 68k\Omega$		460	545	610	mA
Response Time to Short Circuit	t _{ios}	Figure 3			2		μs
REVERSE-VOLTAGE PROTECTION					•		
Reverse-Voltage Comparator Trip Point (V _{OUT} - V _{IN})				115	160	205	mV
Time from Reverse-Voltage Condition to MOSFET Turn-Off				3.5	5.5	7.5	ms
SUPPLY CURRENT							
Supply Current, Low-Level Output	$I_{IN(OFF)}$	V _{IN} = 5.5V, No I	oad on OUT, V _{EN} = 0V		0.1	2.5	μA
Supply Current, High-Level Output	1	R _{ILIM} = 36kΩ	V _{IN} = 5.5V,		71	105	
Supply Current, High-Level Output	I _{IN(ON)}	$R_{ILIM} = 68k\Omega$	No load on OUT		62	95	μΑ
Reverse Leakage Current	I_{REV}	V _{IN} = 5.5V, V _{IN} =	= 0V		0.01	1	μA
UNDER-VOLTAGE LOCKOUT							
Under-Voltage Lockout Threshold	V_{UVLO}	V _{IN} Rising			2.36	2.47	V
Under-Voltage Lockout Threshold Hysteresis					140		mV
QUICK DISCHARGE RESISTOR (SGM2551C	ONLY)						
Discharge Resistor	R _{Discharge}				45		Ω
THERMAL SHUTDOWN							
Thermal Shutdown Threshold					140		°C
Thermal Shutdown Threshold in Current Limit					115		°C
Thermal Shutdown Hysteresis					10		°C

PARAMETER MEASUREMENT INFORMATION

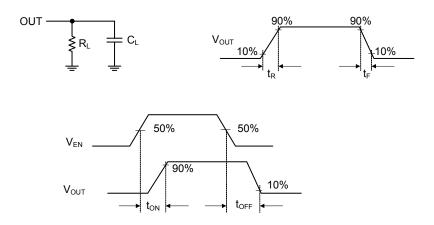


Figure 2. Test Circuit and Voltage Waveforms

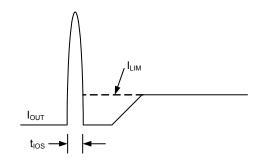


Figure 3. Response Time to Short Circuit Waveform

TYPICAL APPLICATION

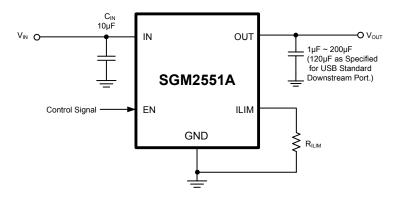
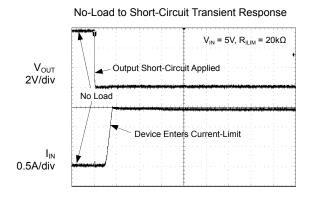
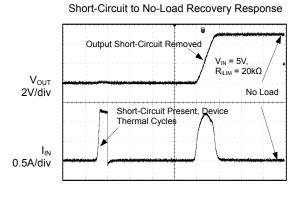
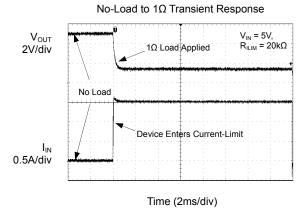
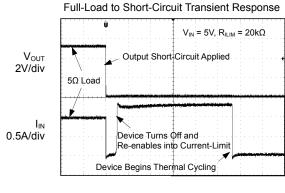
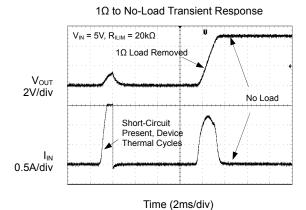
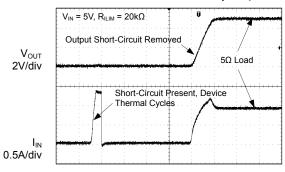




Figure 4. Typical Characteristics Reference Schematic

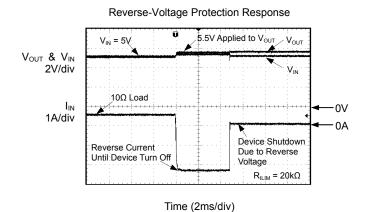

TYPICAL PERFORMANCE CHARACTERISTICS

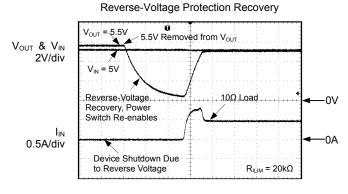


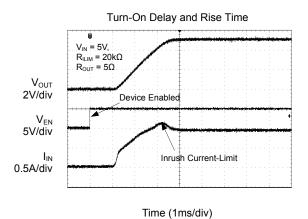

Time (2ms/div)

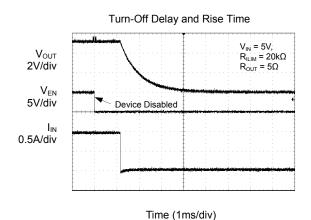

Full Load to Object Circuit Transient Description

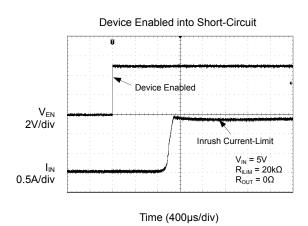
Time (2ms/div)

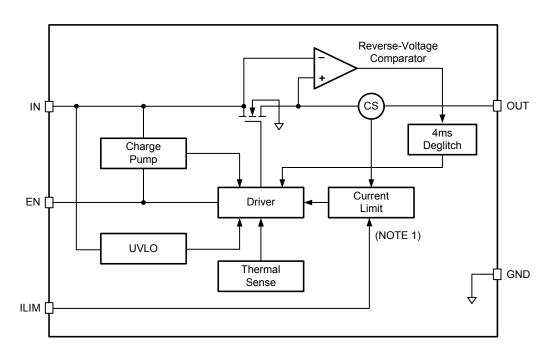



Short-Circuit to Full-Load Recovery Response


Time (2ms/div)


TYPICAL PERFORMANCE CHARACTERISTICS




Time (2ms/div)

FUNCTIONAL BLOCK DIAGRAM

NOTE 1: SGM2551A and SGM2551C parts enter constant-current mode during current limit condition.

DETAILED DESCRIPTION

Overview

The SGM2551A and SGM2551C are current limited, power distribution switches using N-Channel MOSFETs for applications where short circuits or heavy capacitive loads will be encountered and provide up to 1.5A of continuous load current. These devices allow the user to program the current limit threshold between 100mA and 1.7A via an external resistor. Additional device shutdown features include over-temperature protection reverse-voltage protection. The incorporates an internal charge pump and gate drive circuitry necessary to drive the N-Channel MOSFET. The charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate of the MOSFET above the source. The charge pump operates from input voltages as low as 2.5V and requires little supply current. The driver controls the gate voltage of the power switch. The driver incorporates circuitry that controls the rise and fall times of the output voltage to limit large current and voltage surges and provides built-in soft-start functionality. The SGM2551A and SGM2551C enter constant-current mode when the load exceeds the current limit threshold.

Over-Current Conditions

The SGM2551A and SGM2551C respond to over-current conditions by limiting output current to the I_{LIM} levels. When an over-current condition is detected, the device maintains a constant output current and reduces the output voltage accordingly. Two possible overload conditions can occur.

The first condition is when a short circuit or partial short circuit is present when the device is powered-up or enabled. The output voltage is held near zero potential with respect to ground and the SGM2551A/SGM2551C ramp the output current to $I_{\text{LIM}}.$ The SGM2551A and SGM2551C devices will limit the current to I_{LIM} until the overload condition is removed or the device begins to thermal cycle.

The second condition is when a short circuit, partial short circuit, or transient overload occurs while the device is enabled and powered on. The device responds to the over-current condition within time $t_{\rm IOS}$ (see Figure 3). The current-sense amplifier is overdriven during this time and momentarily disables the internal current limit MOSFET. The current-sense amplifier recovers and limits the output current to $l_{\rm LIM}$. Similar to the previous case, the SGM2551A and SGM2551C will limit the current to $l_{\rm LIM}$ until the overload condition is removed or the device begins to thermal cycle.

The SGM2551A and SGM2551C thermal cycles if an overload condition is present long enough to activate thermal limiting in any of the above cases. The device turns off when the junction temperature exceeds 115°C while in current limit. The device remains off until the junction temperature cools 10°C and then restarts. The SGM2551A and SGM2551C cycles on/off until the overload are removed.

Reverse-Voltage Protection

The reverse-voltage protection feature turns off the N-Channel MOSFET whenever the output voltage exceeds the input voltage by 160mV for 5.5ms. This prevents damage to devices on the input side of the SGM2551A/SGM2551C by preventing significant current from sinking into the input capacitance. The SGM2551A /SGM2551C devices allow the N-Channel MOSFET to turn on once the output voltage goes below the input voltage for the same 5.5ms deglitch time.

DETAILED DESCRIPTION

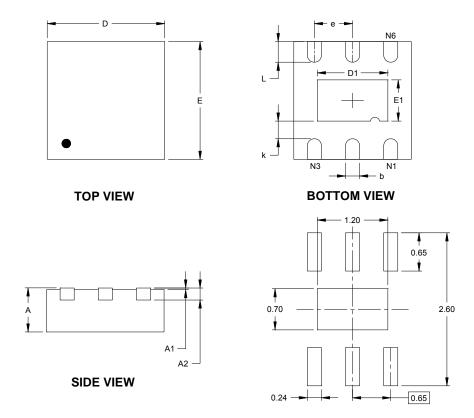
Under-Voltage Lockout (UVLO)

The under-voltage lockout (UVLO) circuit disables the power switch until the input voltage reaches the UVLO turn-on threshold. Built-in hysteresis prevents unwanted on/off cycling due to input voltage drop from large current surges.

Enable

The logic enable controls the power switch, bias for the charge pump, driver, and other circuits to reduce the supply current. The supply current is reduced to less than $1\mu A$ when a logic low is present on EN pin. A logic high input on EN enables the driver, control circuits, and power switch. The enable input is compatible with both TTL and CMOS logic levels.

Thermal Sense

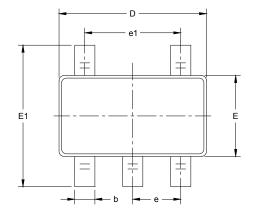

The SGM2551A and SGM2551C have self-protection feature using two independent thermal sensing circuits that monitor the operating temperature of the power switch and disable operation if the temperature exceeds recommended operating conditions.

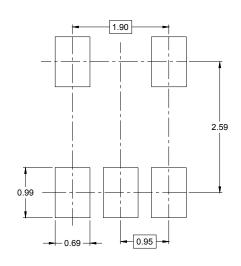
The SGM2551A and SGM2551C devices operate in constant-current mode during an over-current condition, which increases the voltage drop across power switch. The power dissipation in the package is proportional to the voltage drop across the power switch, which increases the junction temperature during an over-current condition. The first thermal sensor turns off the power switch when the die temperature exceeds 115°C and the part is in current limit. Hysteresis is built into the thermal sensor, and the switch turns on after the device has cooled approximately 10°C.

The SGM2551A and SGM2551C also have a second ambient thermal sensor. The ambient thermal sensor turns off the power switch when the die temperature exceeds 140°C regardless of whether the power switch is in current limit and will turn on the power switch after the device has cooled approximately 10°C.

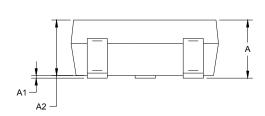
PACKAGE OUTLINE DIMENSIONS

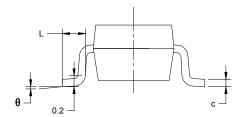
TDFN-2×2-6L



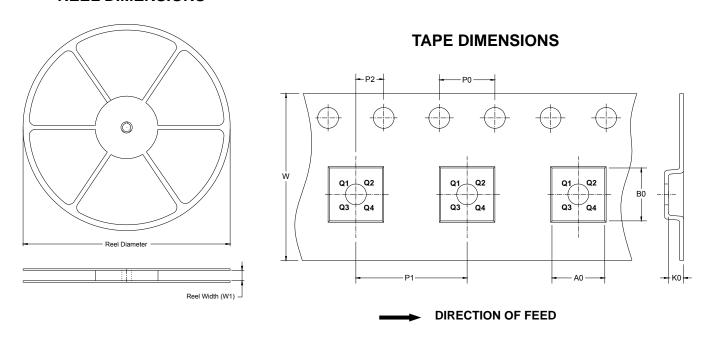

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol		nsions meters	Dimer In In	nsions ches	
	MIN	MAX	MIN	MAX	
Α	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
A2	0.203	REF	0.008 REF		
D	1.900	2.100	0.075	0.083	
D1	1.100	1.300	0.043	0.051	
E	1.900	2.100	0.075	0.083	
E1	0.600	0.800	0.024	0.031	
k	0.200) MIN	0.008	3 MIN	
b	0.180	0.300	0.007	0.012	
е	0.650	0.650 TYP		TYP	
L	0.250	0.450	0.010	0.018	


PACKAGE OUTLINE DIMENSIONS


SOT-23-5

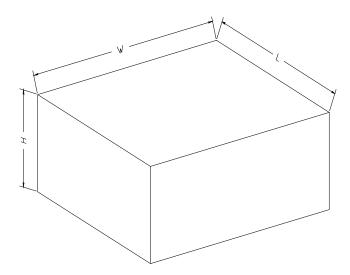
RECOMMENDED LAND PATTERN (Unit: mm)



Symbol		nsions meters	Dimensions In Inches		
•	MIN	MAX	MIN	MAX	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950	BSC	0.037 BSC		
e1	1.900	00 BSC 0.075 BSC		BSC	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0° 8°		

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TDFN-2×2-6L	7"	9.5	2.30	2.30	1.10	4.00	4.00	2.00	8.00	Q1
SOT-23-5	7"	9.5	3.2	3.2	1.4	4.0	4.0	2.0	8.0	Q3

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
7" (Option)	368	227	224	8	
7"	442	410	224	18	