# 74ALVC164245 16-Bit Dual-Supply Translating Transceiver with 3-State Outputs

# **GENERAL DESCRIPTION**

The 74ALVC164245 is a high-performance, low-power, low-voltage CMOS device, superior to most advanced CMOS compatible TTL families.

The 74ALVC164245 is a 16-bit (dual-octal) dual-supply translating transceiver with non-inverting 3-state outputs. The supply rails consist of  $V_{CCB}$ , which is set to operate from 1.5V to 5.5V and  $V_{CCA}$ , which is set to operate from 1.5V to 3.6V.

Inputs can be driven from either 3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3V and 5V system environment.

This device can be used as two 8-bit transceivers or one 16-bit transceiver. The direction control (nDIR) input determines the direction of the data flow. The nDIR (active high) enables data from nAn ports to nBn ports. The nDIR (active low) enables data from nBn ports to nAn ports. The output enable ( $n\overline{OE}$ ) input, when high, disables both nAn and nBn ports by placing them in a highimpedance state. The nDIR,  $n\overline{OE}$  and nAn pins are powered by V<sub>CCA</sub> and nBn pins are powered by V<sub>CCB</sub>.

In suspend mode, when one of the supply voltages is 0V, there will be no current flow from the non-zero supply towards the zero supply. Note that  $V_{CCB} \ge V_{CCA}$ , except in suspend mode.

# FEATURES

- 5V Tolerant Inputs/Outputs for Interfacing with 5V Logic
- Wide Supply Voltage Range:
  - 3V V<sub>CCA</sub>: 1.5V to 3.6V
  - 5V V<sub>CCB</sub>: 1.5V to 5.5V
- CMOS Low Power Consumption
- Direct Interface with TTL Levels
- Control Inputs Voltage Range from 2.7V to 5.5V
- Inputs Accept Voltages up to 5.5V
- High-Impedance Outputs when  $V_{CCA}$  or  $V_{CCB} = 0V$
- -40°C to +125°C Operating Temperature Range
- Available in a Green TSSOP-48 Package

### **PACKAGE/ORDERING INFORMATION**

| MODEL        | PACKAGE<br>DESCRIPTION | SPECIFIED<br>TEMPERATURE<br>RANGE | ORDERING<br>NUMBER    | PACKAGE<br>MARKING             | PACKING<br>OPTION   |
|--------------|------------------------|-----------------------------------|-----------------------|--------------------------------|---------------------|
| 74ALVC164245 | TSSOP-48               | -40°C to +125°C                   | 74ALVC164245XTS48G/TR | 74ALVC164245<br>XTS48<br>XXXXX | Tape and Reel, 2500 |

### MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

XXXXX

└── Vendor Code ──── Trace Code

— Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

### ABSOLUTE MAXIMUM RATINGS<sup>(1)</sup>

| $ \begin{array}{l} \text{Supply Voltage, } V_{\text{CCB}} (V_{\text{CCB}} \geq V_{\text{CCA}}) & \dots & -0.5 \text{V to } 6.5 \text{V} \\ \text{Supply Voltage, } V_{\text{CCA}} (V_{\text{CCB}} \geq V_{\text{CCA}}) & \dots & -0.5 \text{V to } 4.6 \text{V} \\ \text{Control Input Voltage, } V_1^{(2)} & \dots & -0.5 \text{V to } 6.5 \text{V} \\ \text{Input/Output Voltage, } V_{\text{I/O}}^{(2)} & \dots & -0.5 \text{V to } (V_{\text{CC}} + 0.5 \text{V}) \\ \text{Output Voltage, } V_{\text{O}}^{(2)} \end{array} $             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\label{eq:constraint} \begin{array}{l} \text{Output in High-State or Low-State } \dots & -0.5 \text{V to } (\text{V}_{\text{CC}} + 0.5 \text{V}) \\ \text{Output in 3-State } \dots & -0.5 \text{V to } (\text{V}_{\text{CC}} + 0.5 \text{V}) \\ \text{Input Clamping Current, } I_{\text{IK}} (\text{V}_{\text{I}} < 0 \text{V}) \dots & -50 \text{mA} \\ \text{Output Clamping Current, } I_{\text{OK}} (\text{V}_{\text{O}} > \text{V}_{\text{CC}} \text{ or } \text{V}_{\text{O}} < 0 \text{V}) \\ \dots & \pm 50 \text{mA} \end{array}$ |
| Output Sink/Source Current, $I_{O(SINK/SOURCE)}$ (V <sub>O</sub> = 0V to V <sub>CC</sub> )<br>±50mA                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Supply Current, I <sub>CC</sub> 100mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ground Current, I <sub>GND</sub> 100mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Junction Temperature <sup>(3)</sup> +150°C<br>Storage Temperature Range65°C to +150°C<br>Lead Temperature (Soldering, 10s)+260°C                                                                                                                                                                                                                                                                                                                                                                                                              |
| ESD Susceptibility<br>HBM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

### **OVERSTRESS CAUTION**

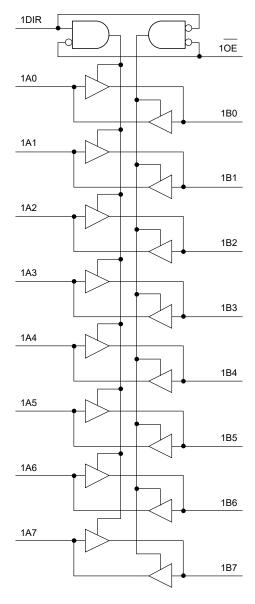
1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

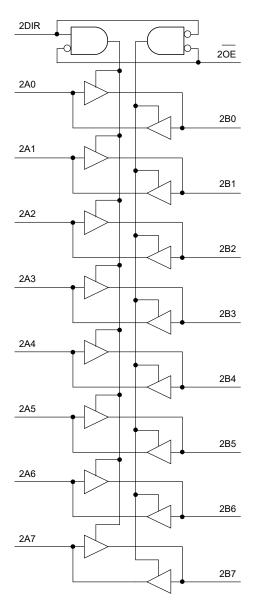
2. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

3. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.

### **RECOMMENDED OPERATING CONDITIONS**

| Supply Voltage, $V_{CCB}$ ( $V_{CCB} \ge V_{CCA}$ )      |
|----------------------------------------------------------|
| Maximum Speed Performance 2.7V to 5.5V                   |
| Low-Voltage Applications 1.5V to 5.5V                    |
| Supply Voltage, $V_{CCA}$ ( $V_{CCB} \ge V_{CCA}$ )      |
| Maximum Speed Performance 2.7V to 3.6V                   |
| Low-Voltage Applications 1.5V to 3.6V                    |
| Control Input Voltage (nOE and nDIR), VI                 |
| 0V to 5.5V                                               |
| Input/Output Voltage, V <sub>I/O</sub>                   |
| nAn Ports0V to V <sub>CCA</sub>                          |
| nBn Ports0V to $V_{CCB}$                                 |
| Input Transition Rise and Fall Rate, $\Delta t/\Delta V$ |
| V <sub>CCA</sub> = 2.7V to 3.0V 20ns/V (MAX)             |
| V <sub>CCA</sub> = 3.0V to 3.6V 10ns/V (MAX)             |
| V <sub>CCB</sub> = 3.0V to 4.5V 20ns/V (MAX)             |
| V <sub>CCB</sub> = 4.5V to 5.5V 10ns/V (MAX)             |
| Operating Temperature Range40°C to +125°C                |


### **ESD SENSITIVITY CAUTION**


This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

### DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

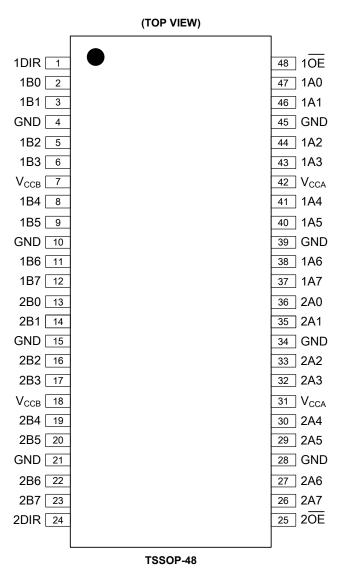
# LOGIC SYMBOL





# **FUNCTION TABLE**

| CONTROL INPUT |      | INPUT/OUTPUT |           |  |
|---------------|------|--------------|-----------|--|
| nOE           | nDIR | nAn          | nBn       |  |
| L             | L    | nAn = nBn    | Inputs    |  |
| L             | Н    | Inputs       | nBn = nAn |  |
| Н             | X    | Z            | Z         |  |


H = High Voltage Level

L = Low Voltage Level

Z = High-Impedance State

X = Don't Care

### **PIN CONFIGURATION**



### **PIN DESCRIPTION**

| PIN                            | NAME                                   | FUNCTION                           |
|--------------------------------|----------------------------------------|------------------------------------|
| 1, 24                          | 1DIR, 2DIR                             | Direction Control Inputs.          |
| 2, 3, 5, 6, 8, 9, 11, 12       | 1B0, 1B1, 1B2, 1B3, 1B4, 1B5, 1B6, 1B7 | Data Inputs/Outputs.               |
| 13, 14, 16, 17, 19, 20, 22, 23 | 2B0, 2B1, 2B2, 2B3, 2B4, 2B5, 2B6, 2B7 | Data Inputs/Outputs.               |
| 4, 10, 15, 21, 28, 34, 39, 45  | GND                                    | Ground.                            |
| 7, 18                          | V <sub>CCB</sub>                       | Supply Voltage $V_{CCB}$ (5V Bus). |
| 48, 25                         | 10E, 20E                               | Output Enable Inputs (Active Low). |
| 47, 46, 44, 43, 41, 40, 38, 37 | 1A0, 1A1, 1A2, 1A3, 1A4, 1A5, 1A6, 1A7 | Data Inputs/Outputs.               |
| 36, 35, 33, 32, 30, 29, 27, 26 | 2A0, 2A1, 2A2, 2A3, 2A4, 2A5, 2A6, 2A7 | Data Inputs/Outputs.               |
| 31, 42                         | V <sub>CCA</sub>                       | Supply Voltage $V_{CCA}$ (3V Bus). |

# **ELECTRICAL CHARACTERISTICS**

(Full = -40°C to +125°C, all typical values are at V<sub>CCB</sub> = 5.0V, V<sub>CCA</sub> = 3.3V and T<sub>A</sub> = +25°C, unless otherwise noted.)

| PARAMETER                                  | SYMBOL           | C                                                              | ONDITIONS                                                                  | TEMP  | MIN                     | TYP  | MAX  | UNITS |
|--------------------------------------------|------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|-------|-------------------------|------|------|-------|
|                                            |                  | nBn ports, V <sub>CCB</sub> :                                  | = 3.0V to 5.5V <sup>(1)</sup>                                              | Full  | 2                       |      |      |       |
| High-Level Input Voltage                   | VIH              | nAn ports,                                                     | V <sub>CCA</sub> = 3.0V to 3.6V                                            | Full  | 2                       |      |      | V     |
|                                            |                  | nOE and nDIR                                                   | $V_{CCA}$ = 2.3V to 2.7V <sup>(1)</sup>                                    | Full  | 1.7                     |      |      |       |
| ow-Level Input Voltage                     |                  |                                                                | $V_{CCB}$ = 4.5V to 5.5V <sup>(1)</sup>                                    | Full  |                         |      | 0.8  |       |
| ····· I ······ I I ······· I / / · I ····· |                  | nBn ports                                                      | $V_{\rm CCB}$ = 3.0V to 3.6V <sup>(1)</sup>                                | Full  |                         |      | 0.7  |       |
| .ow-Level Input Voltage                    | V <sub>IL</sub>  | nAn ports,                                                     | V <sub>CCA</sub> = 3.0V to 3.6V                                            | Full  |                         |      | 0.8  | - V   |
|                                            |                  | nOE and nDIR                                                   | $V_{CCA}$ = 2.3V to 2.7V <sup>(1)</sup>                                    | Full  |                         |      | 0.7  |       |
|                                            |                  |                                                                | I <sub>o</sub> = -24mA, V <sub>CCB</sub> = 4.5V                            | Full  | V <sub>CCB</sub> - 0.6  |      |      |       |
|                                            |                  | nBn ports,                                                     | I <sub>O</sub> = -12mA, V <sub>CCB</sub> = 4.5V                            | Full  | V <sub>CCB</sub> - 0.3  |      |      |       |
|                                            |                  | $V_{I} = V_{IH}$                                               | I <sub>O</sub> = -18mA, V <sub>CCB</sub> = 3.0V                            | Full  | V <sub>CCB</sub> - 0.6  |      |      |       |
|                                            |                  |                                                                | $I_0 = -100 \mu A$ , $V_{CCB} = 3.0 V$                                     | Full  | V <sub>CCB</sub> - 0.05 |      |      |       |
| ligh-Level Output Voltage                  | V <sub>OH</sub>  | nAn ports,<br>V <sub>1</sub> = V <sub>IH</sub>                 | I <sub>O</sub> = -24mA, V <sub>CCA</sub> = 3.0V                            | Full  | V <sub>CCA</sub> - 0.8  |      |      |       |
|                                            |                  |                                                                | $I_0 = -100 \mu A$ , $V_{CCA} = 3.0 V$                                     | Full  | V <sub>CCA</sub> - 0.05 |      |      |       |
|                                            |                  |                                                                | I <sub>0</sub> = -12mA, V <sub>CCA</sub> = 2.7V                            | Full  | V <sub>CCA</sub> - 0.45 |      |      |       |
|                                            |                  |                                                                | $I_0$ = -8mA, $V_{CCA}$ = 2.3V                                             | Full  | V <sub>CCA</sub> - 0.35 |      |      |       |
|                                            |                  |                                                                | $I_0 = -100 \mu A$ , $V_{CCA} = 2.3 V$                                     | Full  | V <sub>CCA</sub> - 0.05 |      |      |       |
|                                            |                  | nBn ports,<br>Vi = Vi⊾                                         | I <sub>O</sub> = 24mA, V <sub>CCB</sub> = 4.5V                             | Full  |                         |      | 0.6  |       |
|                                            |                  |                                                                | I <sub>O</sub> = 12mA, V <sub>CCB</sub> = 4.5V                             | Full  |                         |      | 0.35 |       |
|                                            |                  |                                                                | I <sub>O</sub> = 100μA, V <sub>CCB</sub> = 4.5V                            | Full  |                         |      | 0.05 |       |
|                                            |                  |                                                                | I <sub>O</sub> = 18mA, V <sub>CCB</sub> = 3.0V                             | Full  |                         |      | 0.55 |       |
| ow Lovel Output Veltage                    | Vol              |                                                                | $I_0 = 100 \mu A$ , $V_{CCB} = 3.0 V$                                      | Full  |                         |      | 0.05 |       |
|                                            | VOL              |                                                                | I <sub>O</sub> = 24mA, V <sub>CCA</sub> = 3.0V                             | Full  |                         |      | 0.7  | V     |
|                                            |                  |                                                                | I <sub>O</sub> = 100μΑ, V <sub>CCA</sub> = 3.0V                            | Full  |                         |      | 0.05 |       |
|                                            |                  | nAn ports,<br>V₁ = V <sub>IL</sub>                             | I <sub>O</sub> = 12mA, V <sub>CCA</sub> = 2.7V                             | Full  |                         |      | 0.4  |       |
|                                            |                  |                                                                | I <sub>O</sub> = 12mA, V <sub>CCA</sub> = 2.3V                             | Full  |                         |      | 0.45 |       |
|                                            |                  |                                                                | $I_0 = 100 \mu A$ , $V_{CCA} = 2.3 V$                                      | Full  |                         |      | 0.05 |       |
| nput Leakage Current                       | h                | V <sub>I</sub> = 5.5V or GNI                                   | )                                                                          | Full  |                         | ±0.1 | 2    | μA    |
| Off-State Output Current (2)               | I <sub>oz</sub>  | $V_{I} = V_{IH} \text{ or } V_{IL}, V_{I}$                     | $V_{\rm I} = V_{\rm IH}$ or $V_{\rm IL}$ , $V_{\rm O} = V_{\rm CC}$ or GND |       |                         | ±0.1 | 5    | μA    |
| Supply Current                             | I <sub>cc</sub>  | $V_1 = V_{CC}$ or GND                                          |                                                                            | Full  |                         | 0.1  | 10   | μA    |
| Additional Supply Current (3)              | ΔI <sub>cc</sub> | Any one data inpotential of the the set of the set $V_{CC}$ or | out at V <sub>CC</sub> - 0.6V,<br>GND, I <sub>O</sub> = 0A                 | Full  |                         | 0.1  | 20   | μA    |
| nput Capacitance                           | Cı               |                                                                |                                                                            | +25°C |                         | 4    |      | pF    |
| nput/Output Capacitance                    | C <sub>I/O</sub> | nAn and nBn po                                                 | rts                                                                        | +25°C |                         | 5    |      | pF    |

#### NOTES:

1. If  $V_{\text{CCA}}$  < 2.7V, the switching levels at all inputs are not TTL compatible.

2. For transceivers, the parameter  $I_{\text{OZ}}$  includes the input leakage current.

3.  $V_{CCA}$  = 2.7V to 3.6V: other data inputs at  $V_{CCA}$  or GND;  $V_{CCB}$  = 4.5V to 5.5V: other data inputs at  $V_{CCB}$  or GND.

## **DYNAMIC CHARACTERISTICS**

(For test circuit, see Figure 1. All typical values are measured at  $V_{CCB}$  = 5.0V,  $V_{CCA}$  = 3.3V and  $T_A$  = +25°C, unless otherwise noted.)

| PARAMETER                                  | SYMBOL           | V <sub>CCA</sub> = 2.3V to 2.7V, V <sub>CCB</sub> = 3.0V to 3.6V +2 |                                                                                                                                             | TEMP                                               | MIN   | TYP | MAX | UNITS |  |
|--------------------------------------------|------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------|-----|-----|-------|--|
|                                            |                  |                                                                     | $V_{\rm CCA}$ = 2.3V to 2.7V, $V_{\rm CCB}$ = 3.0V to 3.6V                                                                                  | +25°C                                              |       | 6.2 |     |       |  |
|                                            |                  | nAn to nBn,<br>see Figure 2                                         | $V_{CCA}$ = 2.7V, $V_{CCB}$ = 4.5V to 5.5V                                                                                                  | +25°C                                              |       | 5   |     |       |  |
| Duran a matiene Distance (1)               |                  |                                                                     | $V_{CCA}$ = 3.0V to 3.6V, $V_{CCB}$ = 4.5V to 5.5V                                                                                          | +25°C                                              |       | 4.7 |     |       |  |
| Propagation Delay <sup>(1)</sup>           | t <sub>PD</sub>  |                                                                     | $V_{CCA}$ = 2.3V to 2.7V, $V_{CCB}$ = 3.0V to 3.6V                                                                                          | +25°C                                              |       | 5.9 |     | ns    |  |
|                                            |                  | nBn to nAn,<br>see Figure 2                                         | $V_{CCA}$ = 2.7V, $V_{CCB}$ = 4.5V to 5.5V                                                                                                  | +25°C                                              |       | 4.7 |     |       |  |
|                                            |                  |                                                                     | $V_{CCA}$ = 3.0V to 3.6V, $V_{CCB}$ = 4.5V to 5.5V                                                                                          | +25°C                                              |       | 4.5 |     |       |  |
| Enable Time <sup>(1)</sup> t <sub>Et</sub> |                  |                                                                     | $V_{CCA}$ = 2.3V to 2.7V, $V_{CCB}$ = 3.0V to 3.6V                                                                                          | +25°C                                              |       | 6.3 |     |       |  |
|                                            |                  | nOE to nBn,<br>see Figure 3                                         | $V_{CCA}$ = 2.7V, $V_{CCB}$ = 4.5V to 5.5V                                                                                                  | +25°C                                              |       | 5   |     |       |  |
|                                            |                  | see Figure 5                                                        | $V_{CCA}$ = 3.0V to 3.6V, $V_{CCB}$ = 4.5V to 5.5V                                                                                          | +25°C                                              |       | 4.6 |     | ns    |  |
|                                            | LEN              | n <del>OE</del> to nAn,<br>see Figure 3                             | $V_{CCA}$ = 2.3V to 2.7V, $V_{CCB}$ = 3.0V to 3.6V                                                                                          | +25°C                                              |       | 8   |     |       |  |
|                                            |                  |                                                                     | $V_{CCA}$ = 2.7V, $V_{CCB}$ = 4.5V to 5.5V                                                                                                  | +25°C                                              |       | 6.6 |     |       |  |
|                                            |                  |                                                                     | $V_{CCA}$ = 3.0V to 3.6V, $V_{CCB}$ = 4.5V to 5.5V                                                                                          | +25°C                                              |       | 5.8 |     |       |  |
|                                            |                  | nOE to nBn,                                                         |                                                                                                                                             | $V_{CCA} = 2.3V$ to 2.7V, $V_{CCB} = 3.0V$ to 3.6V | +25°C |     | 6.7 |       |  |
|                                            |                  |                                                                     | $\frac{\text{OE to nBn,}}{\text{vec Figure 3}} = 2.7 \text{V}, \text{V}_{\text{CCB}} = 4.5 \text{V to } 5.5 \text{V} + 25^{\circ} \text{C}$ |                                                    |       | 6.8 |     |       |  |
| Dischus Times (1)                          |                  | See Figure o                                                        | $V_{CCA}$ = 3.0V to 3.6V, $V_{CCB}$ = 4.5V to 5.5V                                                                                          | +25°C                                              |       | 7.8 |     |       |  |
| Disable Time <sup>(1)</sup>                | t <sub>DIS</sub> |                                                                     | $V_{CCA}$ = 2.3V to 2.7V, $V_{CCB}$ = 3.0V to 3.6V                                                                                          | +25°C                                              |       | 7.7 |     | ns    |  |
|                                            |                  | nOE to nAn,<br>see Figure 3                                         | V <sub>CCA</sub> = 2.7V, V <sub>CCB</sub> = 4.5V to 5.5V                                                                                    | +25°C                                              |       | 7.3 |     |       |  |
|                                            |                  | See Figure o                                                        | $V_{CCA}$ = 3.0V to 3.6V, $V_{CCB}$ = 4.5V to 5.5V                                                                                          | +25°C                                              |       | 6.5 |     |       |  |
|                                            |                  | Outputs<br>enabled                                                  | 5V port: nAn to nBn, $V_1$ = GND to $V_{CC}$ ,                                                                                              | +25°C                                              |       | 15  |     |       |  |
| Power Dissipation                          | 6                | Outputs<br>disabled                                                 | $V_{\rm CCB} = 5V, V_{\rm CCA} = 3.3V$                                                                                                      | +25°C                                              |       | 5   |     |       |  |
| Capacitance <sup>(2)</sup>                 | C <sub>PD</sub>  | Outputs<br>enabled                                                  | 3V port: nBn to nAn, V <sub>1</sub> = GND to V <sub>CC</sub> ,                                                                              | +25°C                                              |       | 15  |     | pF    |  |
|                                            |                  | Outputs<br>disabled                                                 | $V_{CCB} = 5V, V_{CCA} = 3.3V$                                                                                                              | +25°C                                              |       | 5   |     |       |  |

#### NOTES:

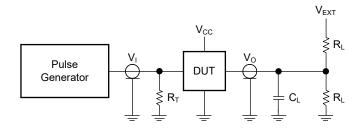
1.  $t_{PD}$  is the same as  $t_{PLH}$  and  $t_{PHL}$ .  $t_{EN}$  is the same as  $t_{PZL}$  and  $t_{PZH}$ .  $t_{DIS}$  is the same as  $t_{PLZ}$  and  $t_{PHZ}$ .

2.  $C_{\text{PD}}$  is used to determine the dynamic power dissipation (P\_D in  $\mu W).$ 

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o})$ where:

 $f_i$  = Input frequency in MHz.

 $f_o$  = Output frequency in MHz.


 $C_L$  = Output load capacitance in pF.

V<sub>CC</sub> = Supply voltage in Volts.

N = Number of inputs switching.

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$  = Sum of the outputs.

# **TEST CIRCUIT**



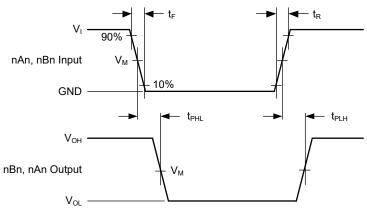
Test conditions are given in Table 1.

Definitions for test circuit:

R<sub>L</sub> = Load resistance.

 $C_L$  = Load capacitance including jig and probe capacitance.

 $R_T$  = Termination resistance should be equal to output impedance  $Z_O$  of the pulse generator.

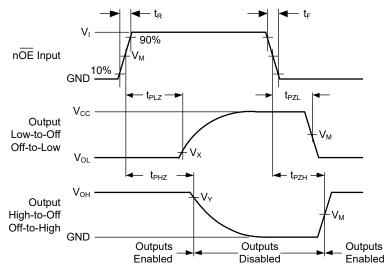

V<sub>EXT</sub> = External voltage for measuring switching times.

#### Figure 1. Test Circuit for Measuring Switching Times

#### Table 1. Test Conditions

| DIRECTION              | SUPPLY           | /OLTAGE          | LOAD |      | V <sub>EXT</sub>                    |                                     |                                     |
|------------------------|------------------|------------------|------|------|-------------------------------------|-------------------------------------|-------------------------------------|
|                        | V <sub>CCA</sub> | V <sub>CCB</sub> | C∟   | RL   | t <sub>PLH</sub> , t <sub>PHL</sub> | t <sub>PZH</sub> , t <sub>PHZ</sub> | t <sub>PZL</sub> , t <sub>PLZ</sub> |
| nAn ports to nBn ports | 2.3V to 2.7V     | 2.7V to 3.6V     | 50pF | 500Ω | Open                                | GND                                 | 2 × V <sub>CC</sub>                 |
| nBn ports to nAn ports | 2.3V to 2.7V     | 2.7V to 3.6V     | 50pF | 500Ω | Open                                | GND                                 | 6.0V                                |
| nAn ports to nBn ports | 2.7V to 3.6V     | 4.5V to 5.5V     | 50pF | 500Ω | Open                                | GND                                 | 2 × V <sub>CC</sub>                 |
| nBn ports to nAn ports | 2.7V to 3.6V     | 4.5V to 5.5V     | 50pF | 500Ω | Open                                | GND                                 | 6.0V                                |

### WAVEFORMS




Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels:  $V_{OL}$  and  $V_{OH}$  are typical output voltage levels that occur with the output load.

#### Figure 2. Input (nAn, nBn) to Output (nBn, nAn) Propagation Delay Times

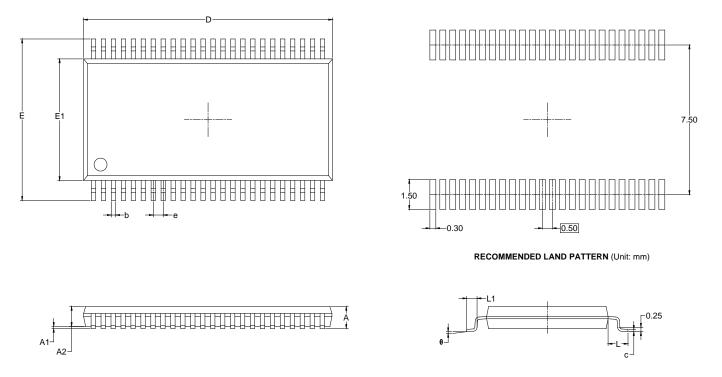


Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels:  $V_{OL}$  and  $V_{OH}$  are typical output voltage levels that occur with the output load.

#### Figure 3. Enable and Disable Times


#### **Table 2. Measurement Points**

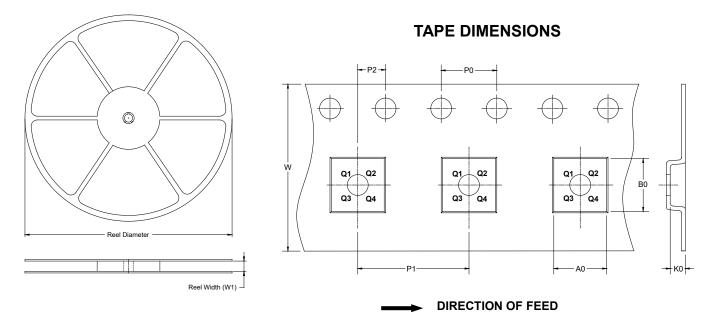
| DIRECTION              | SUPPLY       | VOLTAGE          | INPUT            |                               |                                 | OUTPUT               |                          |                          |  |
|------------------------|--------------|------------------|------------------|-------------------------------|---------------------------------|----------------------|--------------------------|--------------------------|--|
|                        | VCCA         | V <sub>ССВ</sub> | Vı               | V <sub>M</sub> <sup>(1)</sup> | t <sub>R</sub> , t <sub>F</sub> | VM                   | Vx                       | VY                       |  |
| nAn ports to nBn ports | 2.3V to 2.7V | 2.7V to 3.6V     | V <sub>CCA</sub> | $0.5 \times V_{CCA}$          | ≤ 2.5ns                         | 1.5V                 | $V_{OLB}$ + 0.3V         | V <sub>ОНВ</sub> - 0.3V  |  |
| nBn ports to nAn ports | 2.3V to 2.7V | 2.7V to 3.6V     | 2.7V             | 1.5V                          | ≤ 2.5ns                         | $0.5 \times V_{CCA}$ | V <sub>OLA</sub> + 0.15V | V <sub>OHA</sub> - 0.15V |  |
| nAn ports to nBn ports | 2.7V to 3.6V | 4.5V to 5.5V     | 2.7V             | 1.5V                          | ≤ 2.5ns                         | $0.5 \times V_{CCB}$ | $0.2 \times V_{CCB}$     | $0.8 \times V_{CCB}$     |  |
| nBn ports to nAn ports | 2.7V to 3.6V | 4.5V to 5.5V     | 3.0V             | 1.5V                          | ≤ 2.5ns                         | 1.5V                 | $V_{OLA}$ + 0.3V         | V <sub>OHA</sub> - 0.3V  |  |

NOTE: The measurement points should be  $V_{IH}$  or  $V_{IL}$  when the input rising or falling times exceeds 2.5ns.

# PACKAGE OUTLINE DIMENSIONS

### **TSSOP-48**



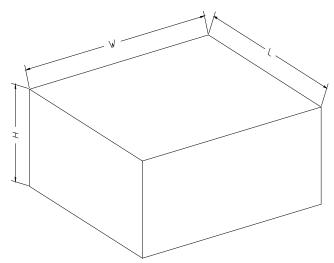

| Symbol | D     | imensions In Millimet | ers   |
|--------|-------|-----------------------|-------|
| Symbol | MIN   | MOD                   | MAX   |
| A      |       |                       | 1.20  |
| A1     | 0.05  | 0.10                  | 0.15  |
| A2     | 0.85  | 0.95                  | 1.05  |
| b      | 0.18  |                       | 0.26  |
| С      | 0.15  |                       | 0.19  |
| D      | 12.40 | 12.50                 | 12.60 |
| E      | 7.90  | 8.10                  | 8.30  |
| E1     | 6.00  | 6.10                  | 6.20  |
| е      |       | 0.50 BSC              |       |
| L      |       | 1.00 REF              |       |
| L1     | 0.45  |                       | 0.75  |
| θ      | 0°    |                       | 8°    |

NOTES: 1. Body dimensions do not include mode flash or protrusion.

2. This drawing is subject to change without notice.

# TAPE AND REEL INFORMATION

### **REEL DIMENSIONS**




NOTE: The picture is only for reference. Please make the object as the standard.

### **KEY PARAMETER LIST OF TAPE AND REEL**

| Package Type | Reel<br>Diameter | Reel Width<br>W1<br>(mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P0<br>(mm) | P1<br>(mm) | P2<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|--------------|------------------|--------------------------|------------|------------|------------|------------|------------|------------|-----------|------------------|
| TSSOP-48     | 13″              | 24.4                     | 8.60       | 13.00      | 1.80       | 4.0        | 12.0       | 2.0        | 24.0      | Q1               |

### **CARTON BOX DIMENSIONS**



NOTE: The picture is only for reference. Please make the object as the standard.

### **KEY PARAMETER LIST OF CARTON BOX**

| Reel Type | Length<br>(mm) | Width<br>(mm) | Height<br>(mm) | Pizza/Carton |        |
|-----------|----------------|---------------|----------------|--------------|--------|
| 13″       | 386            | 280           | 370            | 5            | DD0002 |