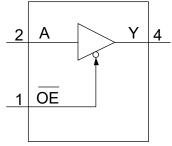
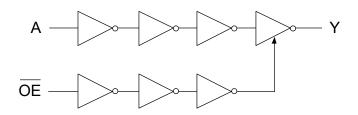
# 74LVC1G125 Bus Buffer/Line Driver with 3-State Output

### **GENERAL DESCRIPTION**

The 74LVC1G125 is a single buffer/line driver with a non-inverting 3-state output and it is designed for 1.65V to 5.5V  $V_{CC}$  operation. The 3-state output is controlled by the output enable input ( $\overline{OE}$ ). When  $\overline{OE}$  is low, the device passes data from the A input to the Y output. When  $\overline{OE}$  is high, the output is in the high-impedance state.


The input can be driven from either 3.3V or 5V devices. This feature allows the use of this device in a mixed 3.3V and 5V environment.

This device is fully specified for partial power-down applications using  $I_{\text{OFF}}$ . The  $I_{\text{OFF}}$  circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.


### **FEATURES**

- Wide Supply Voltage Range: 1.65V to 5.5V
- High Noise Immunity
- ±24mA Output Drive at V<sub>CC</sub> = 3.0V
- CMOS Low Power Consumption
- Inputs Accept Voltages Up to 5V
- Direct Interface with TTL Levels
- -40°C to +125°C Operating Temperature Range
- Available in a Green SC70-5 Package

### LOGIC SYMBOL



LOGIC DIAGRAM

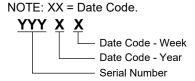


### **FUNCTION TABLE**

| INI | PUT | OUTPUT |
|-----|-----|--------|
| ŌĒ  | Α   | Y      |
| L   | L   | L      |
| L   | Н   | Н      |
| Н   | X   | Z      |

H = High Voltage Level

L = Low Voltage Level


Z = High-Impedance State

X = Don't Care

### PACKAGE/ORDERING INFORMATION

| MODEL      | PACKAGE<br>DESCRIPTION | SPECIFIED<br>TEMPERATURE<br>RANGE | TEMPERATURE ORDERING |       | PACKING<br>OPTION   |
|------------|------------------------|-----------------------------------|----------------------|-------|---------------------|
| 74LVC1G125 | SC70-5                 | -40°C to +125°C                   | 74LVC1G125XC5G/TR    | R56XX | Tape and Reel, 3000 |

#### MARKING INFORMATION



Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

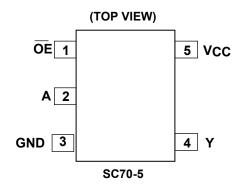
### ABSOLUTE MAXIMUM RATINGS (1)

| ADOULUIL IIII VAIIII OIII IA AII                                           |                                |
|----------------------------------------------------------------------------|--------------------------------|
| Supply Voltage, V <sub>CC</sub>                                            | 0.5V to 6.5V                   |
| Input Voltage, V <sub>I</sub> <sup>(2)</sup>                               | 0.5V to 6.5V                   |
| Output Voltage, Vo (2) (3)                                                 |                                |
| Active Mode                                                                | 0.5V to V <sub>CC</sub> + 0.5V |
| Power-Down Mode                                                            | 0.5 to 6.5V                    |
| Input Clamping Current, I <sub>IK</sub> (V <sub>I</sub> < 0V)              | 50mA                           |
| Output Clamping Current, I <sub>OK</sub> (V <sub>O</sub> > V <sub>CC</sub> | or V <sub>O</sub> < 0V)        |
|                                                                            | ±50mA                          |
| Output Current, $I_O$ ( $V_O = 0V$ to $V_{CC}$ )                           | ±50mA                          |
| Supply Current, I <sub>CC</sub>                                            | 50mA                           |
| Ground Current, I <sub>GND</sub>                                           | 50mA                           |
| Junction Temperature (4)                                                   | +150°C                         |
| Storage Temperature Range                                                  | 65°C to +150°C                 |
| Lead Temperature (Soldering, 10s)                                          | +260°C                         |
| ESD Susceptibility                                                         |                                |
| HBM                                                                        | 6000V                          |
| CDM                                                                        | 1000V                          |

| RECOMMENDED OPERATING                                    | CONDITIONS            |
|----------------------------------------------------------|-----------------------|
| Supply Voltage, V <sub>CC</sub>                          | 1.65V to 5.5V         |
| Input Voltage, V <sub>I</sub>                            | 0V to 5.5V            |
| Output Voltage, V <sub>O</sub>                           |                       |
| Active Mode                                              | 0V to V <sub>CC</sub> |
| Power-Down Mode, V <sub>CC</sub> = 0V                    | 0V to 5.5V            |
| Input Transition Rise and Fall Rate, $\Delta t/\Delta V$ |                       |
| V <sub>CC</sub> = 1.65V to 2.7V                          | 20ns/V (MAX)          |
| V <sub>CC</sub> = 2.7V to 5.5V                           | 10ns/V (MAX)          |
| Operating Temperature Range                              | 40°C to +125°C        |

#### **OVERSTRESS CAUTION**

- 1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.
- 2. The input and output voltage ratings may be exceeded if the input and output clamp current ratings are observed.
- 3. When  $V_{CC} = 0V$  (power-down mode), the output voltage can be 5.5V in normal operation.
- 4. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.


#### **ESD SENSITIVITY CAUTION**

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

#### DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

## **PIN CONFIGURATION**



## **PIN DESCRIPTION**

| PIN | NAME | FUNCTION             |
|-----|------|----------------------|
| 1   | ŌĒ   | Output Enable Input. |
| 2   | А    | Data Input.          |
| 3   | GND  | Ground.              |
| 4   | Y    | Data Output.         |
| 5   | Vcc  | Supply Voltage.      |

## **ELECTRICAL CHARACTERISTICS**

(Full = -40°C to +125°C, all typical values are measured at  $V_{CC}$  = 3.3V and  $T_A$  = +25°C, unless otherwise noted.)

| PARAMETER                  | SYMBOL           |                                                                         | CONDITIONS                                                 | TEMP  | MIN                    | TYP                    | MAX                    | UNITS |  |
|----------------------------|------------------|-------------------------------------------------------------------------|------------------------------------------------------------|-------|------------------------|------------------------|------------------------|-------|--|
|                            |                  | V <sub>CC</sub> = 1.6                                                   | 5V to 1.95V                                                | Full  | 0.65 × V <sub>CC</sub> |                        |                        |       |  |
| 18.1.1.1.1.2.2.8           | .,               | $V_{CC} = 2.3$                                                          | V to 2.7V                                                  | Full  | 1.7                    |                        |                        |       |  |
| High-Level Input Voltage   | V <sub>IH</sub>  | V <sub>CC</sub> = 2.7V to 3.6V                                          |                                                            | Full  | 2                      |                        |                        | V     |  |
|                            |                  | V <sub>CC</sub> = 4.5                                                   | V to 5.5V                                                  | Full  | 0.7 × V <sub>CC</sub>  |                        |                        |       |  |
|                            |                  | V <sub>CC</sub> = 1.6                                                   | 5V to 1.95V                                                | Full  |                        |                        | 0.35 × V <sub>CC</sub> |       |  |
| Lave Lavel Inner & Valtage |                  | $V_{CC} = 2.3$                                                          | V to 2.7V                                                  | Full  |                        |                        | 0.7                    | \ /   |  |
| Low-Level Input Voltage    | V <sub>IL</sub>  | V <sub>CC</sub> = 2.7                                                   | 'V to 3.6V                                                 | Full  |                        |                        | 0.8                    | V     |  |
|                            |                  | V <sub>CC</sub> = 4.5                                                   | V to 5.5V                                                  | Full  |                        |                        | 0.3 × V <sub>CC</sub>  |       |  |
|                            |                  |                                                                         | $V_{CC}$ = 1.65V to 5.5V, $I_{O}$ = -100 $\mu$ A           | Full  | V <sub>CC</sub> - 0.05 | V <sub>CC</sub> - 0.01 |                        |       |  |
|                            |                  |                                                                         | $V_{CC} = 1.65V, I_{O} = -4mA$                             | Full  | 1.43                   | 1.55                   |                        | ٧     |  |
| High-Level Output Voltage  | V <sub>он</sub>  | $V_{I} = V_{IH}$                                                        | $V_{CC} = 2.3V, I_{O} = -8mA$                              | Full  | 2.02                   | 2.18                   |                        |       |  |
|                            |                  |                                                                         | $V_{CC} = 2.7V, I_{O} = -12mA$                             | Full  | 2.38                   | 2.56                   |                        |       |  |
|                            |                  |                                                                         | $V_{CC} = 3.0V, I_{O} = -24mA$                             | Full  | 2.52                   | 2.74                   |                        |       |  |
|                            |                  |                                                                         | $V_{CC} = 4.5V, I_{O} = -32mA$                             | Full  | 4                      | 4.22                   |                        | ı     |  |
|                            |                  |                                                                         | $V_{CC}$ = 1.65V to 5.5V, $I_{O}$ = 100 $\mu$ A            | Full  |                        | 0.01                   | 0.05                   |       |  |
|                            |                  |                                                                         | $V_{CC} = 1.65V, I_O = 4mA$                                | Full  |                        | 0.1                    | 0.22                   |       |  |
| Lave Lavel Output Maltage  |                  | \                                                                       | $V_{CC} = 2.3V, I_O = 8mA$                                 | Full  |                        | 0.12                   | 0.28                   | V     |  |
| Low-Level Output Voltage   | V <sub>OL</sub>  | $V_I = V_{IL}$                                                          | V <sub>CC</sub> = 2.7V, I <sub>O</sub> = 12mA              | Full  |                        | 0.16                   | 0.34                   | V     |  |
|                            |                  |                                                                         | $V_{CC} = 3.0V, I_{O} = 24mA$                              | Full  |                        | 0.3                    | 0.56                   |       |  |
|                            |                  |                                                                         | $V_{CC} = 4.5V, I_O = 32mA$                                | Full  |                        | 0.32                   | 0.6                    |       |  |
| Input Leakage Current      | l <sub>1</sub>   | V <sub>CC</sub> = 0V                                                    | V <sub>CC</sub> = 0V to 5.5V, V <sub>I</sub> = 5.5V or GND |       |                        | ±0.01                  | ±1                     | μA    |  |
| Off-State Output Current   | l <sub>oz</sub>  | $V_{CC}$ = 3.6V, $V_{I}$ = $V_{IH}$ or $V_{IL}$ , $V_{O}$ = 5.5V or GND |                                                            | Full  |                        | ±0.01                  | ±1                     | μA    |  |
| Power-Off Leakage Current  | I <sub>OFF</sub> | $V_{CC}$ = 0V, $V_1$ or $V_0$ = 5.5V                                    |                                                            | Full  |                        | ±0.01                  | ±1                     | μA    |  |
| Supply Current             | Icc              | $V_{CC}$ = 1.65V to 5.5V, $V_{I}$ = 5.5V or GND, $I_{O}$ = 0A           |                                                            | Full  |                        | 0.01                   | 1                      | μA    |  |
| Additional Supply Current  | ΔI <sub>CC</sub> |                                                                         | $V_{CC}$ = 2.3V to 5.5V,<br>- 0.6V, $I_{O}$ = 0A           | Full  |                        | 0.05                   | 10                     | μA    |  |
| Input Capacitance          | Cı               | $V_{CC} = 3.3$                                                          | $V_i$ , $V_i$ = GND to $V_{CC}$                            | +25°C |                        | 3.5                    |                        | pF    |  |

### **DYNAMIC CHARACTERISTICS**

(For test circuit, see Figure 1. Full = -40°C to +125°C, all typical values are measured at  $T_A$  = +25°C and  $V_{CC}$  = 1.8V, 2.5V, 2.7V, 3.3V and 5.0V respectively, unless otherwise noted.)

| PARAMETER             | SYMBOL           | CONDITIONS                          |                                  |       | MIN (1) | TYP  | MAX (1) | UNITS |  |
|-----------------------|------------------|-------------------------------------|----------------------------------|-------|---------|------|---------|-------|--|
|                       |                  |                                     | V <sub>CC</sub> = 1.65V to 1.95V | Full  | 0.5     | 6.4  | 15.0    |       |  |
|                       |                  |                                     | V <sub>CC</sub> = 2.3V to 2.7V   | Full  | 0.5     | 3.6  | 7.5     |       |  |
| Propagation Delay (2) | t <sub>PD</sub>  | A to Y, see Figure 2                | V <sub>CC</sub> = 2.7V           | Full  | 0.5     | 3.3  | 7.5     | ns    |  |
|                       |                  |                                     | V <sub>CC</sub> = 3.0V to 3.6V   | Full  | 0.5     | 3.1  | 6.5     |       |  |
|                       |                  |                                     | V <sub>CC</sub> = 4.5V to 5.5V   | Full  | 0.5     | 2.7  | 5.0     |       |  |
|                       |                  |                                     | V <sub>CC</sub> = 1.65V to 1.95V | Full  | 0.5     | 6.9  | 16.5    |       |  |
|                       | t <sub>EN</sub>  | OE to Y, see Figure 3               | V <sub>CC</sub> = 2.3V to 2.7V   | Full  | 0.5     | 3.7  | 8.0     | ns    |  |
| Enable Time (3)       |                  |                                     | V <sub>CC</sub> = 2.7V           | Full  | 0.1     | 3.6  | 8.0     |       |  |
|                       |                  |                                     | V <sub>CC</sub> = 3.0V to 3.6V   | Full  | 0.1     | 3    | 6.5     |       |  |
|                       |                  |                                     | V <sub>CC</sub> = 4.5V to 5.5V   | Full  | 0.1     | 2.6  | 4.5     |       |  |
|                       |                  |                                     | V <sub>CC</sub> = 1.65V to 1.95V | Full  | 0.5     | 6.4  | 12.5    |       |  |
|                       |                  |                                     | V <sub>CC</sub> = 2.3V to 2.7V   | Full  | 0.5     | 3.6  | 6.5     | ns    |  |
| Disable Time (4)      | t <sub>DIS</sub> | OE to Y, see Figure 3               | V <sub>CC</sub> = 2.7V           | Full  | 0.5     | 4.2  | 6.5     |       |  |
|                       |                  |                                     | V <sub>CC</sub> = 3.0V to 3.6V   | Full  | 0.5     | 4.2  | 6.5     |       |  |
|                       |                  |                                     | V <sub>CC</sub> = 4.5V to 5.5V   | Full  | 0.5     | 3.5  | 5.0     |       |  |
| Power Dissipation     | C                | Par buffor V = CND to V             | Output enabled                   | +25°C |         | 18.9 |         | _     |  |
| Capacitance (5)       | $C_{PD}$         | Per buffer, $V_I = GND$ to $V_{CC}$ | Output disabled                  | +25°C |         | 0.5  |         | pF    |  |

#### NOTES:

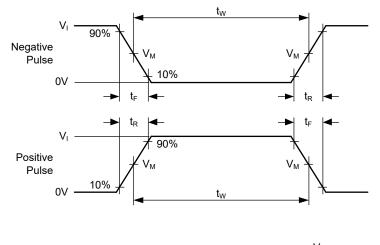
- 1. Specified by design and characterization; not production tested.
- 2.  $t_{PD}$  is the same as  $t_{PLH}$  and  $t_{PHL}$ .
- 3.  $t_{\text{EN}}$  is the same as  $t_{\text{PZH}}$  and  $t_{\text{PZL}}$
- 4.  $t_{DIS}$  is the same as  $t_{PLZ}$  and  $t_{PHZ}$ .
- 5.  $C_{PD}$  is used to determine the dynamic power dissipation ( $P_D$  in  $\mu W$ ).

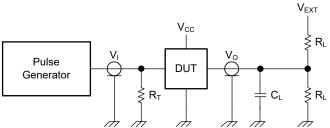
$$P_{D} = C_{PD} \times V_{CC} \times f_{i} \times N + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o})$$

where

 $f_i$  = Input frequency in MHz.

f<sub>o</sub> = Output frequency in MHz.


C<sub>L</sub> = Output load capacitance in pF.


V<sub>CC</sub> = Supply voltage in Volts.

N = Number of inputs switching.

 $\Sigma(C_L \times V_{CC}^2 \times f_0) = \text{Sum of outputs.}$ 

### **TEST CIRCUIT**





Test conditions are given in Table 1.

Definitions for test circuit:

R<sub>L</sub> = Load resistance.

 $C_L$  = Load capacitance including jig and probe capacitance.

 $R_T$  = Termination resistance should be equal to the output impedance  $Z_0$  of the pulse generator.

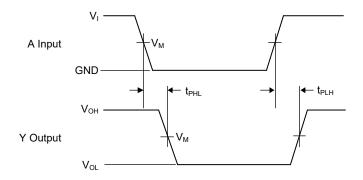

 $V_{\mathsf{EXT}}$  = External voltage for measuring switching times.

Figure 1. Test Circuit for Measuring Switching Times

**Table 1. Test Conditions** 

| SUPPLY VOLTAGE  | INPUT    |                                 | LOAD |                |                                     |                                     |                                     |
|-----------------|----------|---------------------------------|------|----------------|-------------------------------------|-------------------------------------|-------------------------------------|
| V <sub>cc</sub> | Vı       | t <sub>r</sub> , t <sub>f</sub> | CL   | R <sub>L</sub> | t <sub>PLH</sub> , t <sub>PHL</sub> | t <sub>PLZ</sub> , t <sub>PZL</sub> | t <sub>PHZ</sub> , t <sub>PZH</sub> |
| 1.65V to 1.95V  | $V_{CC}$ | ≤ 2.0ns                         | 30pF | 1kΩ            | Open                                | 2V <sub>CC</sub>                    | GND                                 |
| 2.3V to 2.7V    | $V_{CC}$ | ≤ 2.0ns                         | 30pF | 500Ω           | Open                                | 2V <sub>CC</sub>                    | GND                                 |
| 2.7V            | 2.7V     | ≤ 2.5ns                         | 50pF | 500Ω           | Open                                | 6V                                  | GND                                 |
| 3.0V to 3.6V    | 2.7V     | ≤ 2.5ns                         | 50pF | 500Ω           | Open                                | 6V                                  | GND                                 |
| 4.5V to 5.5V    | Vcc      | ≤ 2.5ns                         | 50pF | 500Ω           | Open                                | 2V <sub>CC</sub>                    | GND                                 |

### **WAVEFORMS**



Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels:  $V_{\text{OL}}$  and  $V_{\text{OH}}$  are typical output voltage levels that occur with the output load.

OE Input

GND

V<sub>CC</sub>

Output

Low-to-Off
Off-to-Low

V<sub>OL</sub>

V<sub>OH</sub>

Output

High-to-Off
Off-to-High
GND

Output

Enabled

Output

Disabled

Output

Enabled

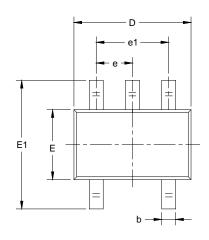
Figure 2. Input A to Output Y Propagation Delays

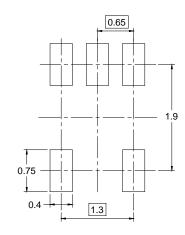
Test conditions are given in Table 1.

Measurement points are given in Table 2.

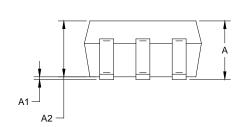
Logic levels:  $V_{\text{OL}}$  and  $V_{\text{OH}}$  are typical output voltage levels that occur with the output load.

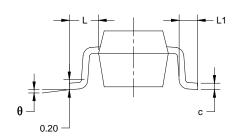
Figure 3. 3-State Enable and Disable Times


**Table 2. Measurement Points** 


| SUPPLY VOLTAGE  | INPUT                         | OUTPUT             |                         |                         |  |  |  |  |
|-----------------|-------------------------------|--------------------|-------------------------|-------------------------|--|--|--|--|
| V <sub>cc</sub> | V <sub>M</sub> <sup>(1)</sup> | V <sub>M</sub>     | V <sub>X</sub>          | V <sub>Y</sub>          |  |  |  |  |
| 1.65V to 1.95V  | 0.5V <sub>CC</sub>            | 0.5V <sub>CC</sub> | V <sub>OL</sub> + 0.15V | V <sub>OH</sub> - 0.15V |  |  |  |  |
| 2.3V to 2.7V    | 0.5V <sub>CC</sub>            | 0.5V <sub>CC</sub> | V <sub>OL</sub> + 0.15V | V <sub>OH</sub> - 0.15V |  |  |  |  |
| 2.7V            | 1.5V                          | 1.5V               | V <sub>OL</sub> + 0.3V  | V <sub>OH</sub> - 0.3V  |  |  |  |  |
| 3.0V to 3.6V    | 1.5V                          | 1.5V               | V <sub>OL</sub> + 0.3V  | V <sub>OH</sub> - 0.3V  |  |  |  |  |
| 4.5V to 5.5V    | 0.5V <sub>CC</sub>            | 0.5V <sub>CC</sub> | V <sub>OL</sub> + 0.3V  | V <sub>OH</sub> - 0.3V  |  |  |  |  |

#### NOTE:

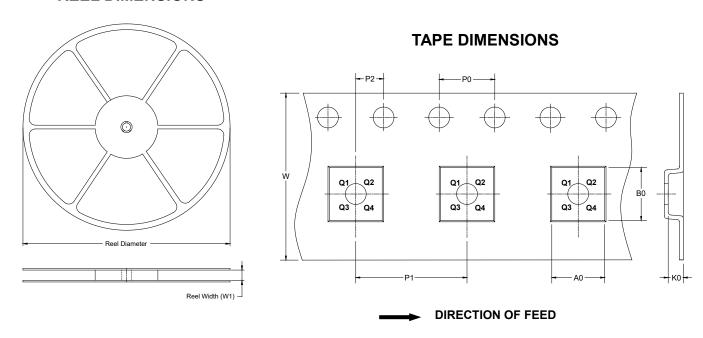

1. The measurement points should be  $V_{IH}$  or  $V_{IL}$  when the input rising or falling time exceeds 2.5ns.


# PACKAGE OUTLINE DIMENSIONS SC70-5





RECOMMENDED LAND PATTERN (Unit: mm)

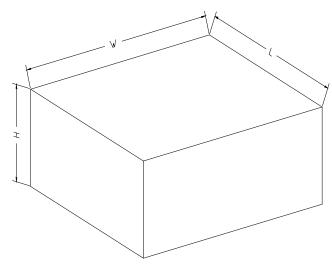





| Symbol | _     | nsions<br>meters | Dimensions<br>In Inches |       |  |  |
|--------|-------|------------------|-------------------------|-------|--|--|
|        | MIN   | MAX              | MIN                     | MAX   |  |  |
| Α      | 0.800 | 1.100            | 0.031                   | 0.043 |  |  |
| A1     | 0.000 | 0.100            | 0.000                   | 0.004 |  |  |
| A2     | 0.800 | 1.000            | 0.031                   | 0.039 |  |  |
| b      | 0.150 | 0.350            | 0.006                   | 0.014 |  |  |
| С      | 0.080 | 0.220            | 0.003                   | 0.009 |  |  |
| D      | 2.000 | 2.200            | 0.079                   | 0.087 |  |  |
| Е      | 1.150 | 1.350            | 0.045                   | 0.053 |  |  |
| E1     | 2.150 | 2.450            | 0.085                   | 0.096 |  |  |
| е      | 0.65  | TYP              | 0.026                   | TYP   |  |  |
| e1     | 1.300 | BSC              | 0.051 BSC               |       |  |  |
| L      | 0.525 | REF              | F 0.021 REF             |       |  |  |
| L1     | 0.260 | 0.460            | 0.010                   | 0.018 |  |  |
| θ      | 0°    | 8°               | 0° 8°                   |       |  |  |

## TAPE AND REEL INFORMATION

### **REEL DIMENSIONS**




NOTE: The picture is only for reference. Please make the object as the standard.

### **KEY PARAMETER LIST OF TAPE AND REEL**

| Package Type | Reel<br>Diameter | Reel Width<br>W1<br>(mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P0<br>(mm) | P1<br>(mm) | P2<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|--------------|------------------|--------------------------|------------|------------|------------|------------|------------|------------|-----------|------------------|
| SC70-5       | 7"               | 9.5                      | 2.25       | 2.55       | 1.20       | 4.0        | 4.0        | 2.0        | 8.0       | Q3               |

### **CARTON BOX DIMENSIONS**



NOTE: The picture is only for reference. Please make the object as the standard.

### **KEY PARAMETER LIST OF CARTON BOX**

| Reel Type   | Length<br>(mm) | Width<br>(mm) | Height<br>(mm) | Pizza/Carton |
|-------------|----------------|---------------|----------------|--------------|
| 7" (Option) | 368            | 227           | 224            | 8            |
| 7"          | 442            | 410           | 224            | 18           |