SN74LVC1G126

SCES224R - APRIL 1999-REVISED JANUARY 2015

SN74LVC1G126 Single Bus Buffer Gate With 3-State Output

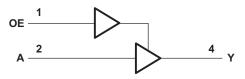
1 Features

- Available in the Texas Instruments NanoFree[™] Package
- Supports 5-V V_{CC} Operation
- Inputs Accept Voltages to 5.5 V
- Provides Down Translation to V_{CC}
- Max t_{pd} of 3.7 ns at 3.3 V
- Low Power Consumption, 10-µA Max I_{CC}
- ±24-mA Output Drive at 3.3 V
- I_{off} Supports Live Insertion, Partial-Power-Down Mode, and Back Drive Protection
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model
 - 200-V Machine Model
 - 1000-V Charged-Device Model

2 Applications

- Cable Modem Termination Systems
- High-Speed Data Acquisition and Generation
- Military: Radars and Sonars
- Motor Controls: High-Voltage
- Power Line Communication Modems
- SSDs: Internal or External
- Video Broadcasting and Infrastructure: Scalable Platforms
- Video Broadcasting: IP-Based Multi-Format Transcoders
- Video Communication Systems

3 Description


This single buffer is designed for 1.65-V to 3.6-V V_{CC} operation. The LVC1G126 device is a single line driver with 3-state output. The output is disabled when the output-enable input is low.

Device information '									
PART NUMBER	PACKAGE (PIN)	BODY SIZE							
	SOT-23 (5)	2.90 mm × 1.60 mm							
	SC70 (5)	2.00 mm × 1.25 mm							
SN74LVC1G126	SOT (5)	1.60 mm × 1.20 mm							
	SON (6)	1.00 mm × 1.00 mm							
	XBGA (5)	1.40 mm × 0.90 mm							

Device Information⁽¹⁾

(1) For all available packages, see the orderable addendum at the end of the data sheet.

4 Simplified Schematic

Table of Contents


1	Feat	ures 1
2	Арр	lications1
3	Des	cription1
4	Sim	plified Schematic1
5	Revi	ision History 2
6	Pin	Configuration and Functions 3
7	Spe	cifications 4
	7.1	Absolute Maximum Ratings 4
	7.2	ESD Ratings 4
	7.3	Recommended Operating Conditions5
	7.4	Thermal Information 5
	7.5	Electrical Characteristics
	7.6	Switching Characteristics, $C_L = 15 \text{ pF}$
	7.7	Switching Characteristics, -40°C to 85°C6
	7.8	Switching Characteristics, -40°C to 125°C7
	7.9	Operating Characteristics 7
	7.10	Typical Characteristics 7
8	Para	meter Measurement Information8

5 Revision History

Cł	anges from Revision Q (December 2013) to Revision R Page
•	Added Applications, Device Information table, Handling Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section 1
Cł	anges from Revision P (November 2012) to Revision Q Page
•	Updated document to new TI data sheet format1
•	Changed MAX operating temperature to 125°C in Recommended Operating Conditions table
•	Added ESD warning 13
Cł	anges from Revision O (March 2011) to Revision P Page
•	Removed Ordering Information table 1
Cł	anges from Revision N (February 2007) to Revision O Page
•	Added DSF package option to the data sheet

9	Deta	iled Description 1	0
	9.1	Overview 1	0
	9.2	Functional Block Diagram 1	0
	9.3	Feature Description 1	0
	9.4	Device Functional Modes 1	0
10	App	lication and Implementation1	1
	10.1	Application Information 1	1
	10.2	Typical Application 1	1
11	Pow	er Supply Recommendations 1	2
12	Layo	out 1	
	12.1		2
	12.2	Layout Example 1	2
13	Devi	ce and Documentation Support 1	3
	13.1	Trademarks 1	3
	13.2	Electrostatic Discharge Caution 1	3
	13.3	Glossary 1	3
14	Mec	hanical, Packaging, and Orderable	
	Infor	mation 1	3

6 Pin Configuration and Functions

See mechanical drawings for dimensions.

Pin Functions

PIN									
	SN74LVC1G126		ТҮРЕ	DESCRIPTION					
NAME	DBV, DCK, DRL, YZP	DRY, DSF							
А	2	2	I	A Input					
GND	3	3	—	Ground Pin					
NC	—	5	_	Do not connect					
OE	1	1	I	OE Enable/Input					
V _{cc}	5	6	_	Power Pin					
Y	4	4	0	Y Output					

SCES224R - APRIL 1999-REVISED JANUARY 2015

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

				MIN	MAX	UNIT
V_{CC}	Supply voltage range	Itage range ⁽²⁾ range applied to any output in the high-impedance or power-off state ⁽²⁾ range applied to any output in the high or low state ⁽²⁾⁽³⁾ amp current $V_1 < 0$ clamp current $V_0 < 0$ ous output current				V
VI	Input voltage range ⁽²⁾			-0.5	6.5	V
Vo	Voltage range applied to any output in the high-in	mpedance or power-off state ⁽²⁾		-0.5	6.5	V
Vo	Voltage range applied to any output in the high or low state ⁽²⁾⁽³⁾				$V_{CC} + 0.5$	V
I _{IK}					-50	mA
I _{OK}	Output clamp current	V _O < 0			-50	mA
I _O	Continuous output current				±50	mA
	Continuous current through V _{CC} or GND				±100	mA
T _{stg}	Storage temperature range			-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The value of V_{CC} is provided in the *Recommended Operating Conditions* table.

7.2 ESD Ratings

	PARAMETER	DEFINITION	VALUE	UNIT
V	Electrostatic	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	2000	V
V(ESD)	discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	1000	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT	
	Supply voltage	Operating	1.65	5.5	V	
V _{CC}	Supply voltage	Data retention only	1.5		V	
		V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}			
\ <i>\</i>	High-level input voltage	V _{CC} = 2.3 V to 2.7 V	1.7		V	
VIH		$V_{CC} = 3 V \text{ to } 3.6 V$	2		V	
		$V_{CC} = 4.5 V \text{ to } 5.5 V$	0.7 × V _{CC}			
		$V_{CC} = 1.65 \text{ V} \text{ to } 1.95 \text{ V}$		$0.35 \times V_{CC}$		
v		V_{CC} = 2.3 V to 2.7 V		0.7	V	
VIL	Low-level input voltage	$V_{CC} = 3 V \text{ to } 3.6 V$		0.8	v	
			$0.3 \times V_{CC}$			
VI	Input voltage		0	5.5	V	
Vo	Output voltage		0	V _{CC}	V	
		V _{CC} = 1.65 V		-4		
		$V_{CC} = 2.3 V$		-8		
I _{OH}	High-level output current	$V_{CC} = 3 V$		-16	mA	
		$V_{CC} = 3 V$		-24		
		$V_{CC} = 4.5 V$		-32		
		V _{CC} = 1.65 V		4		
		V _{CC} = 2.3 V		8		
I _{OL}	Low-level output current	N 2N		16	mA	
		$V_{CC} = 3 V$		24		
		$V_{CC} = 4.5 V$		32	L	
		V_{CC} = 1.8 V ± 0.15 V, 2.5 V ± 0.2 V		20		
Δt/Δv	Input transition rise or fall rate	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		10	ns/V	
		$V_{CC} = 5 V \pm 0.5 V$		5		
T _A	Operating free-air temperature		-40	125	°C	

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

7.4 Thermal Information

		SN74LVC1G126							
THERMAL METRIC ⁽¹⁾		DBV	DCK	DRL	DRY	YZP	UNIT		
		5 PINS	5 PINS	5 PINS	6 PINS	5 PINS			
$R_{\theta JA}$	Junction-to-ambient thermal resistance	206	252	142	234	132	°C/W		

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

SN74LVC1G126

SCES224R - APRIL 1999-REVISED JANUARY 2015

7.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

		TEAT CONDITIONS		–40°0	C to 85°C		-40 °	C to 125°C		
PA	RAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP ⁽¹⁾	MAX	MIN	TYP ⁽¹⁾	MAX	UNIT
		I _{OH} = -100 μA	1.65 V to 5.5 V	$V_{CC} - 0.1$			V _{CC} – 0.1			
V _{OH}		$I_{OH} = -4 \text{ mA}$	1.65 V	1.2			1.2			
		$I_{OH} = -8 \text{ mA}$	2.3 V	1.9			1.9			V
Vol $I_{OH} = -16 \text{ mA}$ $I_{OH} = -24 \text{ mA}$ $I_{OH} = -32 \text{ mA}$ $I_{OL} = 100 \text{ µA}$ $I_{OL} = 4 \text{ mA}$ $I_{OL} = 8 \text{ mA}$	I _{OH} = -16 mA	3 V	2.4			2.4				
	$I_{OH} = -24 \text{ mA}$	3 V	2.3			2.3				
		I _{OH} = -32 mA	4.5 V	3.8			3.8			
		I _{OL} = 100 μA	1.65 V to 5.5 V			0.1			0.1	
		I _{OL} = 4 mA	1.65 V			0.45			0.45	
V		I _{OL} = 8 mA	2.3 V			0.3			0.3	V
VOL		I _{OL} = 16 mA	3 V			0.4			0.4	v
		I _{OL} = 24 mA	3 V			0.55			0.55	
		I _{OL} = 32 mA	4.5 V			0.55			0.1 0.45 0.3 0.4 0.55 0.55 ±5 ±10 μμ 10 μμ	
I _I	A or OE inputs	$V_1 = 5.5 V \text{ or GND}$	0 to 5.5 V			±5			±5	μA
I _{off}		$V_{\rm I}$ or $V_{\rm O}$ = 5.5 V	0			±10			±10	μA
I _{OZ}		$V_0 = 0$ to 5.5 V	3.6 V			10			10	μA
I _{CC}		$V_{\rm I} = 5.5 \text{ V or GND}$ $I_{\rm O} = 0$	1.65 V to 5.5 V			10			10	μA
ΔI_{CC}		One input at V _{CC} $-$ 0.6 V, Other inputs at V _{CC} or GND	3 V to 5.5 V			500			500	μA
Ci		$V_I = V_{CC}$ or GND	3.3 V		4			4		pF

(1) All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

7.6 Switching Characteristics, $C_L = 15 \text{ pF}$

over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 3)

						-40°C to	o 85°C				
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 5 V ± 0.5 V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	А	Y	1.7	6.9	0.6	4.6	0.6	3.7	0.5	3.4	ns

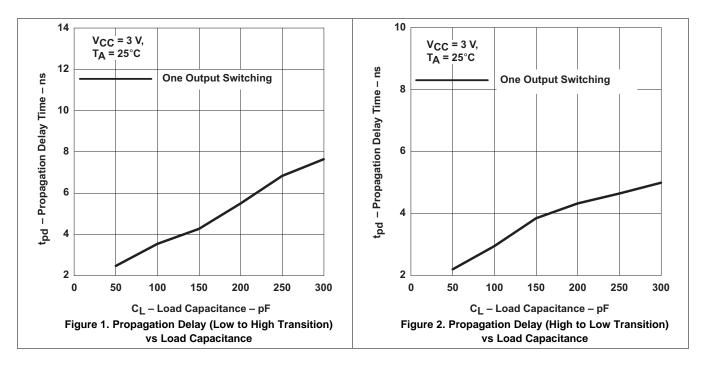
7.7 Switching Characteristics, -40°C to 85°C

over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ or 50 pF (unless otherwise noted) (see Figure 4)

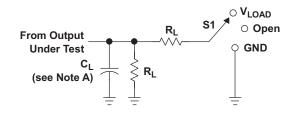
						–40°C t	o 85°C				
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 5 V ± 0.5 V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	A	Y	2.6	8	1.1	5.5	1	4.5	1	4	ns
t _{en}	OE	Y	2.8	9.4	1.3	6.6	1.2	5.3	1	5	ns
t _{dis}	OE	Y	1.6	9.8	1	5.5	1	5.5	1	4.2	ns

7.8 Switching Characteristics, -40°C to 125°C

over recommended operating free-air temperature range, C_L = 30 pF or 50 pF (unless otherwise noted) (see Figure 4)


			–40°C to 125°C								
PARAMETER	PARAMETER FROM (INPUT)		V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 5 V ± 0.5 V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	A	Y	2.6	9	1.1	5.7	1	4.7	1	4.2	ns
t _{en}	OE	Y	2.8	9.6	1.3	6.8	1.2	5.5	1	5.2	ns
t _{dis}	OE	Y	1.6	10	1	5.7	1	5.7	1	4.4	ns

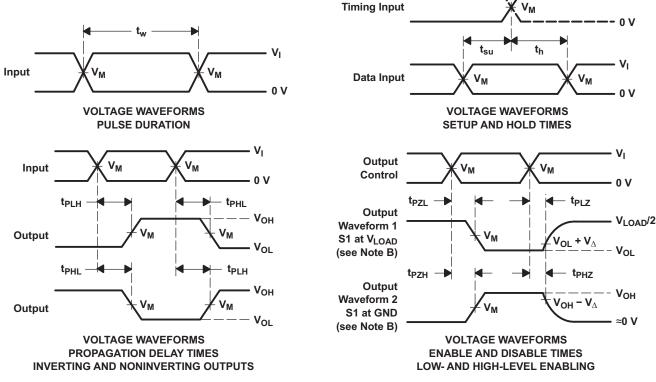
7.9 Operating Characteristics


 $T_A = 25^{\circ}C$

	PARAMETEI	TEST CONDITIONS	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	V _{CC} = 3.3 V TYP	V _{CC} = 5 V TYP	UNIT		
~	Power dissipation	Outputs enabled		19	19	19	21	pF	
Cpd	capacitance	Outputs disabled	f = 10 MHz	2	2	3	4		

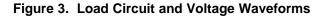
7.10 Typical Characteristics

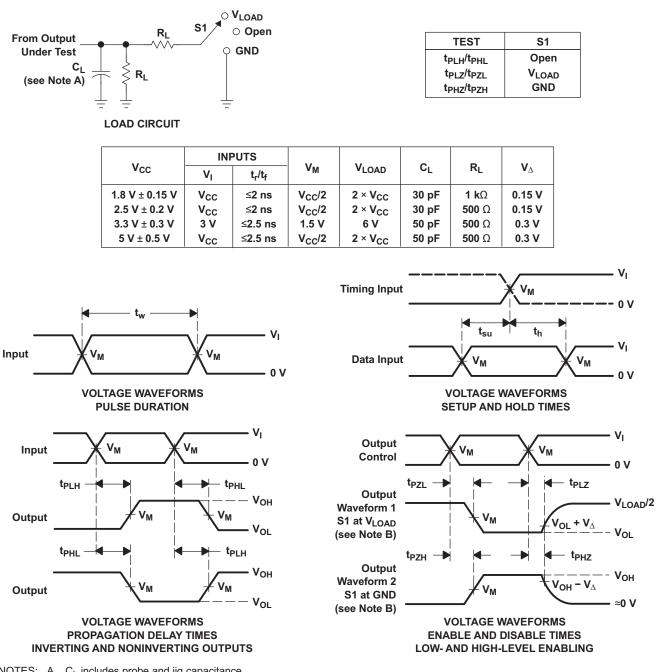
8 Parameter Measurement Information



LOAD CIRCUIT

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND


V


	INPUT			N	•	-	N
V _{cc}	VI	t _r /t _f	VM	V _{LOAD}	CL	RL	V_{Δ}
1.8 V ± 0.15 V	Vcc	≤2 ns	V _{CC} /2	2 × V _{CC}	15 pF	1 Μ Ω	0.15 V
2.5 V ± 0.2 V	V _{CC}	≤2 ns	V _{CC} /2	2 × V _{CC}	15 pF	1 Μ Ω	0.15 V
3.3 V ± 0.3 V	3 V	≤2.5 ns	1.5 V	6 V	15 pF	1 Μ Ω	0.3 V
$5 V \pm 0.5 V$	V _{cc}	≤2.5 ns	V _{CC} /2	$2 \times V_{CC}$	15 pF	1 Μ Ω	0.3 V

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR≤ 10 MHz, Z_O = 50 Ω.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

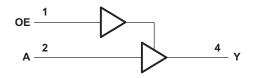
Parameter Measurement Information (continued)

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR< 10 MHz, Z_0 = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{od}.
- H. All parameters and waveforms are not applicable to all devices.

Figure 4. Load Circuit and Voltage Waveforms

9 Detailed Description


9.1 Overview

The SN74LVC1G126 device contains a dual buffer gate with output enable control and performs the Boolean function Y = A.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

9.2 Functional Block Diagram

9.3 Feature Description

- 1.65 V to 5.5 V operating voltage range
- Allows down voltage translation
 - 5 V to 3.3 V
 - 5 V or 3.3 V to 1.8 V
 - Inputs accept voltages to 5.5 V
 - 5.5-V tolerance on input pin when $V_{CC} = 0 V$
- I_{off} feature
 - Allows voltage on the inputs and outputs when V_{CC} is 0 V
 - Able to reduce leakage when V_{CC} is 0 V

9.4 Device Functional Modes

Table 1. Function Table

INP	JTS	OUTPUT
OE	Α	Y
Н	Н	Н
Н	L	L
L	Х	Z

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

The SN74LVC1G126 device is a high-drive CMOS device that can be used as an output enabled buffer with a high output drive, such as an LED application. It can produce 24 mA of drive current at 3.3 V, making it ideal for driving multiple outputs and good for high speed applications up to 100 MHz. The inputs are 5.5-V tolerant allowing it to translate down to V_{CC} .

10.2 Typical Application

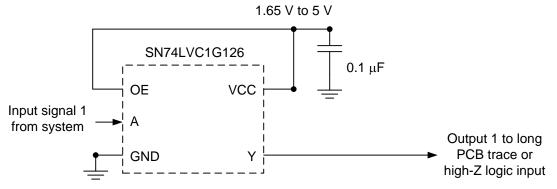


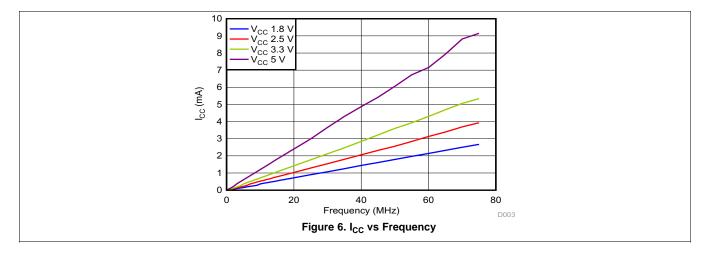
Figure 5. Application Schematic

10.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. Outputs can be combined to produce higher drive but the high drive will also create faster edges into light loads, so routing and load conditions should be considered to prevent ringing.

10.2.2 Detailed Design Procedure

1. Recommended Input Conditions:


- For rise time and fall time specifications, see $\Delta t/\Delta V$ in the *Recommended Operating Conditions* table.
- For specified high and low levels, see V_{IH} and V_{IL} in the *Recommended Operating Conditions* table.
- Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid V_{CC} .
- 2. Recommend Output Conditions:
 - Load currents should not exceed 50 mA per output and 100 mA total for the part.

SN74LVC1G126

SCES224R - APRIL 1999-REVISED JANUARY 2015

Typical Application (continued)

10.2.3 Application Curves

11 Power Supply Recommendations

The power supply can be any voltage between the MIN and MAX supply voltage rating located in the *Recommended Operating Conditions* table.

Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1- μ F capacitor is recommended. If there are multiple V_{CC} terminals, then 0.01- μ F or 0.022- μ F capacitors are recommended for each power terminal. It is ok to parallel multiple bypass capacitors to reject different frequencies of noise. Multiple bypass capacitors may be paralleled to reject different frequencies of noise. The bypass capacitor should be installed as close to the power terminal as possible for the best results.

12 Layout

12.1 Layout Guidelines

When using multiple bit logic devices, inputs should not float. In many cases, functions or parts of functions of digital logic devices are unused. Some examples are when only two inputs of a triple-input AND gate are used, or when only 3 of the 4-buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states.

Specified in Figure 7 are rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} , whichever makes more sense or is more convenient. It is acceptable to float outputs unless the part is a transceiver. If the transceiver has an output enable pin, it will disable the outputs section of the part when asserted. This will not disable the input section of the I/Os so they also cannot float when disabled.

12.2 Layout Example

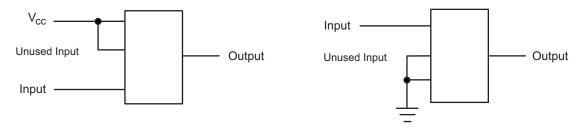


Figure 7. Layout Diagram

13 Device and Documentation Support

13.1 Trademarks

NanoFree is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

13.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation.

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
74LVC1G126DBVRE4	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	C26F	Samples
74LVC1G126DBVRG4	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	C26F	Samples
74LVC1G126DBVTE4	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	C26F	Samples
74LVC1G126DBVTG4	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	C26F	Samples
74LVC1G126DCKRE4	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	CN5	Samples
74LVC1G126DCKRG4	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	CN5	Samples
74LVC1G126DCKTG4	ACTIVE	SC70	DCK	5	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	CN5	Samples
74LVC1G126DRLRG4	ACTIVE	SOT-5X3	DRL	5	4000	RoHS & Green	NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	(CN7, CNR)	Samples
SN74LVC1G126DBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(C265, C26F, C26J, C26K, C26R, C 26T)	Samples
SN74LVC1G126DBVT	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(C265, C26F, C26J, C26K, C26R)	Samples
SN74LVC1G126DCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(CN5, CNF, CNJ, CN K, CNR, CNT)	Samples
SN74LVC1G126DCKT	ACTIVE	SC70	DCK	5	250	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(CN5, CNF, CNJ, CN K, CNR)	Samples
SN74LVC1G126DRLR	ACTIVE	SOT-5X3	DRL	5	4000	RoHS & Green	NIPDAU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	(CN7, CNR)	Samples
SN74LVC1G126DRYR	ACTIVE	SON	DRY	6	5000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	CN	Samples
SN74LVC1G126DSFR	ACTIVE	SON	DSF	6	5000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	-40 to 125 CN	
SN74LVC1G126YZPR	ACTIVE	DSBGA	YZP	5	3000	RoHS & Green	SNAGCU	Level-1-260C-UNLIM	-40 to 85	(CN7, CNN)	Samples

PACKAGE OPTION ADDENDUM

10-Dec-2020

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

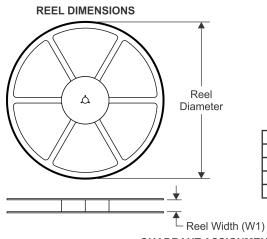
⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

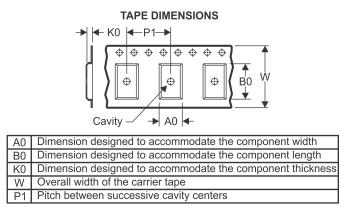
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

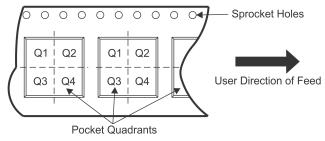
OTHER QUALIFIED VERSIONS OF SN74LVC1G126 :

Automotive: SN74LVC1G126-Q1


Enhanced Product: SN74LVC1G126-EP

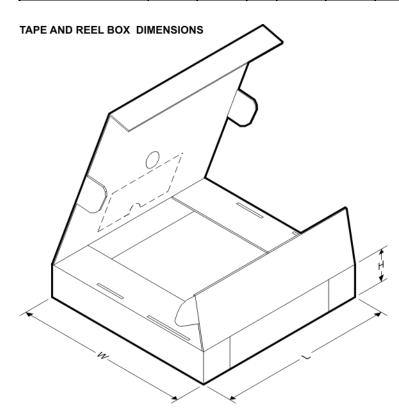

NOTE: Qualified Version Definitions:

- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications


17-Feb-2021

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
74LVC1G126DBVRG4	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
74LVC1G126DBVTG4	SOT-23	DBV	5	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
74LVC1G126DCKRG4	SC70	DCK	5	3000	178.0	9.2	2.4	2.4	1.22	4.0	8.0	Q3
74LVC1G126DCKTG4	SC70	DCK	5	250	178.0	9.2	2.4	2.4	1.22	4.0	8.0	Q3
SN74LVC1G126DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
SN74LVC1G126DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
SN74LVC1G126DBVR	SOT-23	DBV	5	3000	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
SN74LVC1G126DBVR	SOT-23	DBV	5	3000	178.0	9.2	3.3	3.23	1.55	4.0	8.0	Q3
SN74LVC1G126DBVT	SOT-23	DBV	5	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
SN74LVC1G126DBVT	SOT-23	DBV	5	250	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
SN74LVC1G126DBVT	SOT-23	DBV	5	250	178.0	9.2	3.3	3.23	1.55	4.0	8.0	Q3
SN74LVC1G126DBVT	SOT-23	DBV	5	250	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
SN74LVC1G126DCKR	SC70	DCK	5	3000	178.0	9.2	2.4	2.4	1.22	4.0	8.0	Q3
SN74LVC1G126DCKR	SC70	DCK	5	3000	180.0	8.4	2.47	2.3	1.25	4.0	8.0	Q3
SN74LVC1G126DCKT	SC70	DCK	5	250	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
SN74LVC1G126DCKT	SC70	DCK	5	250	178.0	9.2	2.4	2.4	1.22	4.0	8.0	Q3
SN74LVC1G126DCKT	SC70	DCK	5	250	180.0	8.4	2.47	2.3	1.25	4.0	8.0	Q3
SN74LVC1G126DRLR	SOT-5X3	DRL	5	4000	180.0	9.5	1.78	1.78	0.69	4.0	8.0	Q3

PACKAGE MATERIALS INFORMATION

17-Feb-2021

Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC1G126DRLR	SOT-5X3	DRL	5	4000	180.0	8.4	1.98	1.78	0.69	4.0	8.0	Q3
SN74LVC1G126DRYR	SON	DRY	6	5000	180.0	8.4	1.2	1.65	0.69	4.0	8.0	Q1
SN74LVC1G126DSFR	SON	DSF	6	5000	180.0	9.5	1.16	1.16	0.5	4.0	8.0	Q2
SN74LVC1G126YZPR	DSBGA	YZP	5	3000	178.0	9.2	1.02	1.52	0.63	4.0	8.0	Q1

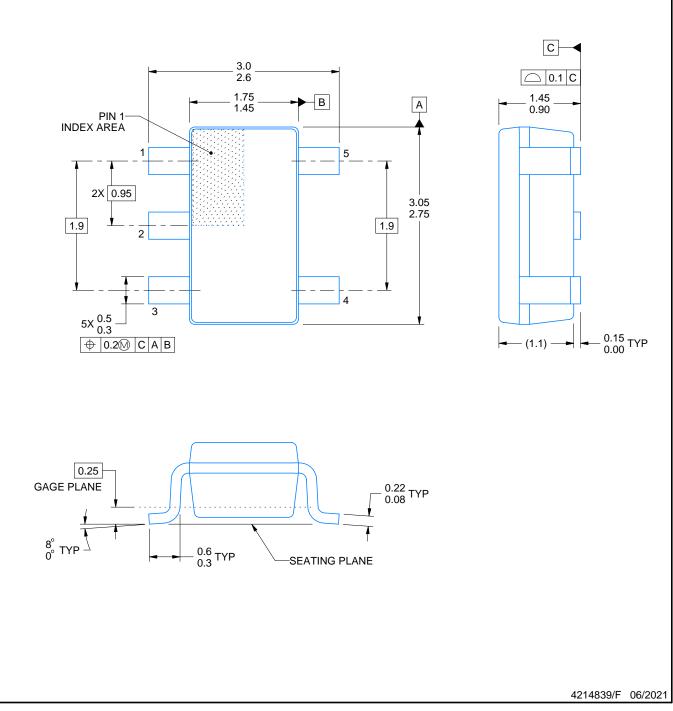
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
74LVC1G126DBVRG4	SOT-23	DBV	5	3000	180.0	180.0	18.0
74LVC1G126DBVTG4	SOT-23	DBV	5	250	180.0	180.0	18.0
74LVC1G126DCKRG4	SC70	DCK	5	3000	180.0	180.0	18.0
74LVC1G126DCKTG4	SC70	DCK	5	250	180.0	180.0	18.0
SN74LVC1G126DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
SN74LVC1G126DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
SN74LVC1G126DBVR	SOT-23	DBV	5	3000	202.0	201.0	28.0
SN74LVC1G126DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
SN74LVC1G126DBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
SN74LVC1G126DBVT	SOT-23	DBV	5	250	202.0	201.0	28.0
SN74LVC1G126DBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
SN74LVC1G126DBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
SN74LVC1G126DCKR	SC70	DCK	5	3000	180.0	180.0	18.0

PACKAGE MATERIALS INFORMATION

17-Feb-2021

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVC1G126DCKR	SC70	DCK	5	3000	202.0	201.0	28.0
SN74LVC1G126DCKT	SC70	DCK	5	250	180.0	180.0	18.0
SN74LVC1G126DCKT	SC70	DCK	5	250	180.0	180.0	18.0
SN74LVC1G126DCKT	SC70	DCK	5	250	202.0	201.0	28.0
SN74LVC1G126DRLR	SOT-5X3	DRL	5	4000	184.0	184.0	19.0
SN74LVC1G126DRLR	SOT-5X3	DRL	5	4000	202.0	201.0	28.0
SN74LVC1G126DRYR	SON	DRY	6	5000	200.0	183.0	25.0
SN74LVC1G126DSFR	SON	DSF	6	5000	184.0	184.0	19.0
SN74LVC1G126YZPR	DSBGA	YZP	5	3000	220.0	220.0	35.0


DBV0005A

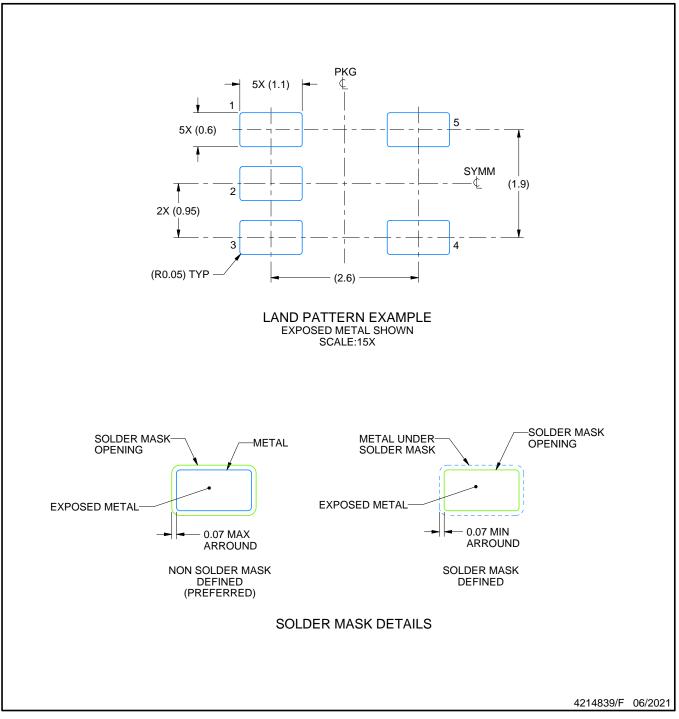
PACKAGE OUTLINE

SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC MO-178.


- 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.

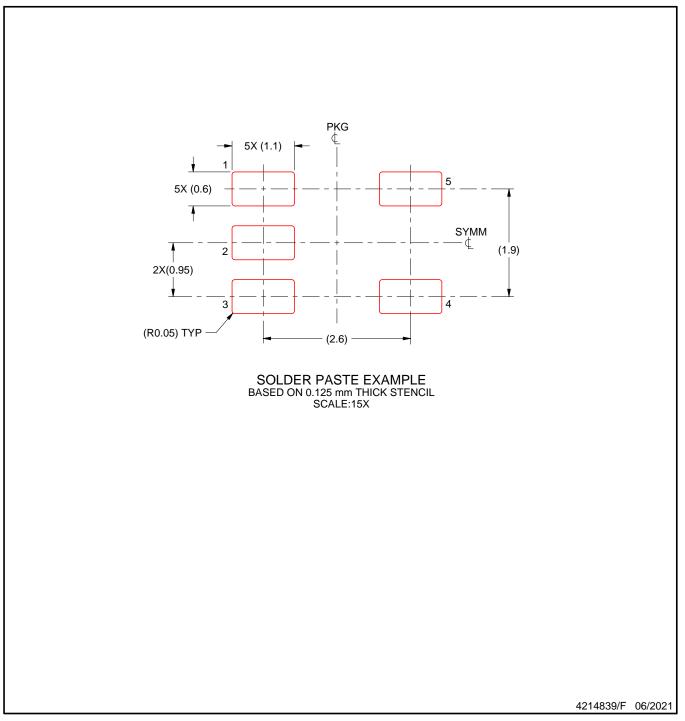
DBV0005A

EXAMPLE BOARD LAYOUT

SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

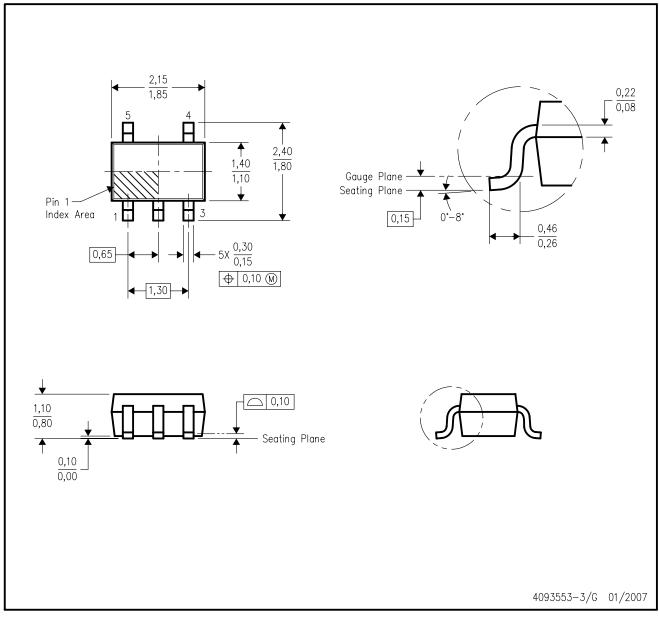

5. Publication IPC-7351 may have alternate designs.6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

DBV0005A

EXAMPLE STENCIL DESIGN

SOT-23 - 1.45 mm max height

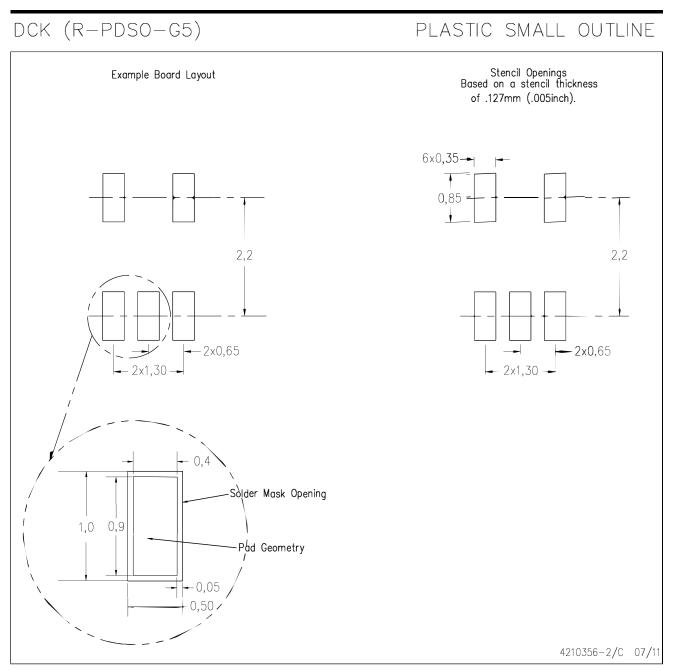
SMALL OUTLINE TRANSISTOR


NOTES: (continued)

^{7.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

^{8.} Board assembly site may have different recommendations for stencil design.

DCK (R-PDSO-G5)

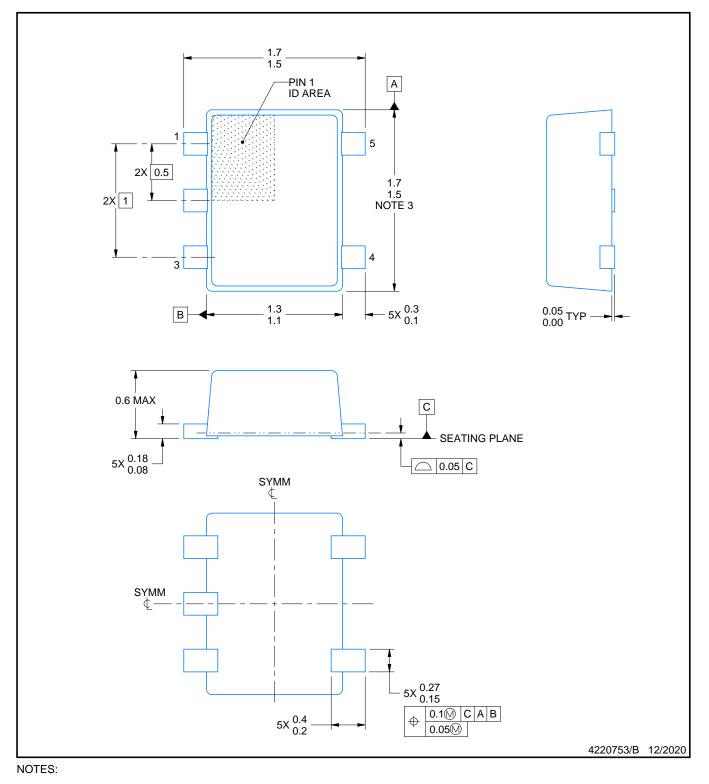

PLASTIC SMALL-OUTLINE PACKAGE

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-203 variation AA.

LAND PATTERN DATA

NOTES:

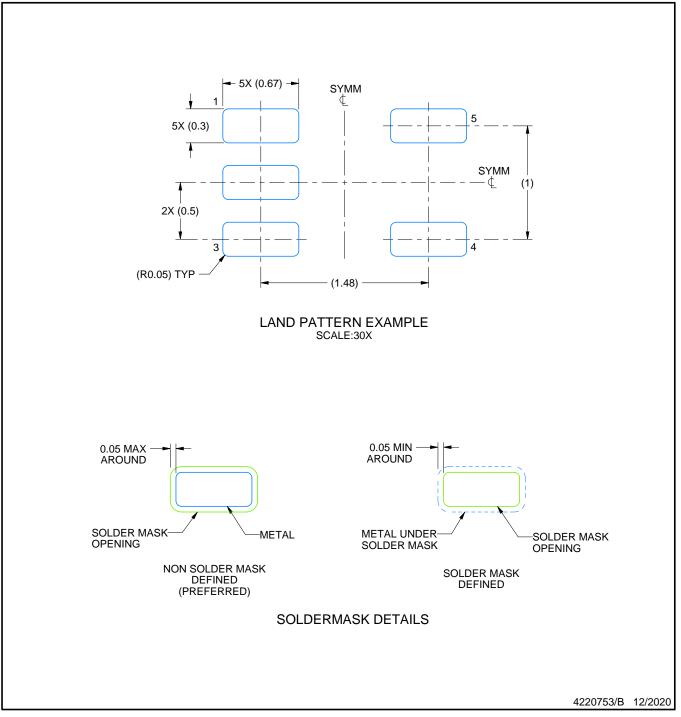
- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.


DRL0005A

PACKAGE OUTLINE

SOT - 0.6 mm max height

PLASTIC SMALL OUTLINE


- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side. 4. Reference JEDEC registration MO-293 Variation UAAD-1

DRL0005A

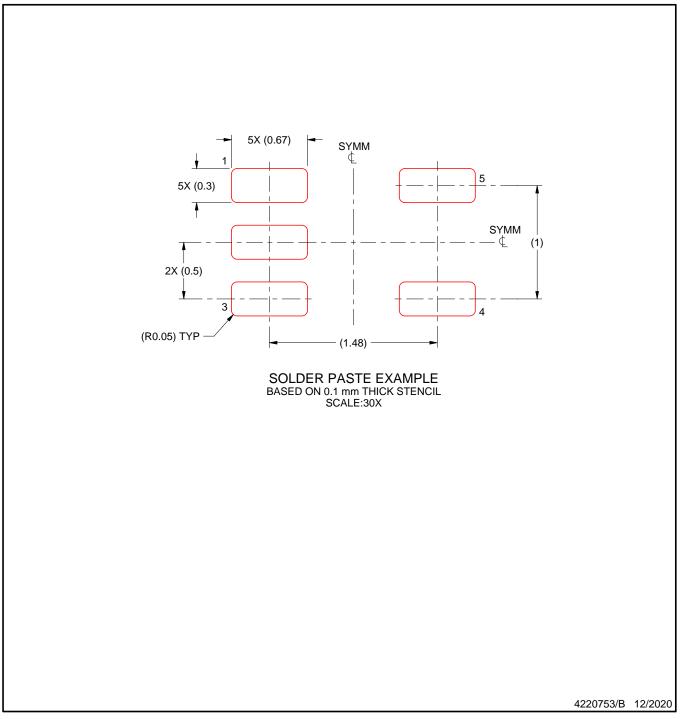
EXAMPLE BOARD LAYOUT

SOT - 0.6 mm max height

PLASTIC SMALL OUTLINE

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.


6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

DRL0005A

EXAMPLE STENCIL DESIGN

SOT - 0.6 mm max height

PLASTIC SMALL OUTLINE

NOTES: (continued)

^{7.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

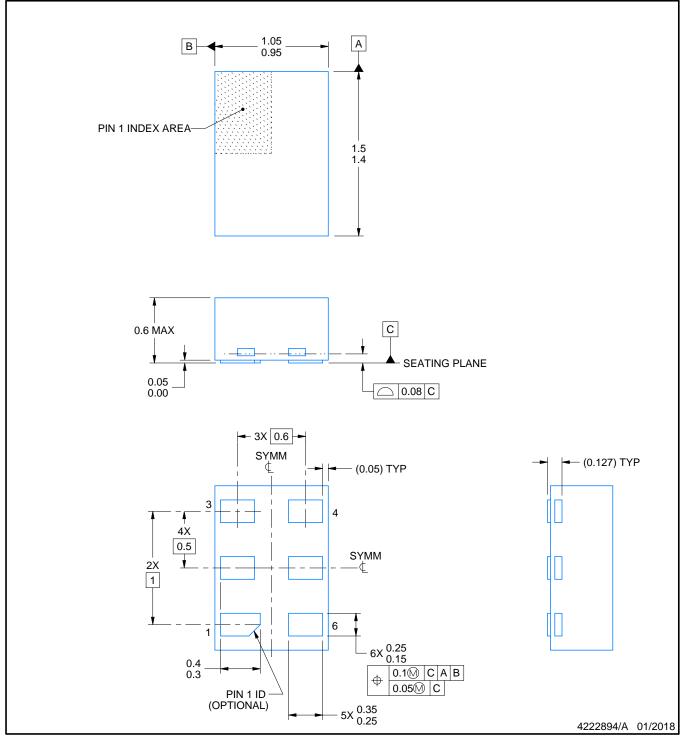
^{8.} Board assembly site may have different recommendations for stencil design.

DRY 6

GENERIC PACKAGE VIEW

USON - 0.6 mm max height PLASTIC SMALL OUTLINE - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

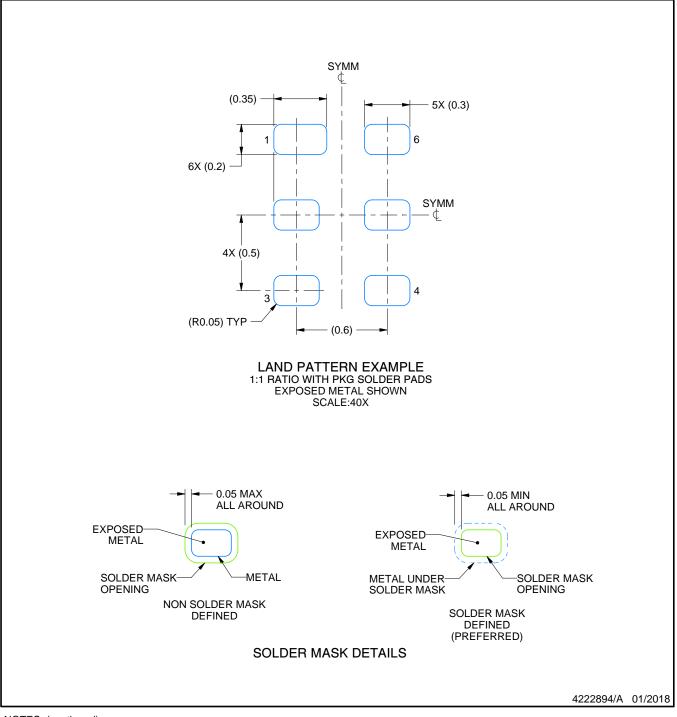

DRY0006A

PACKAGE OUTLINE

USON - 0.6 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.

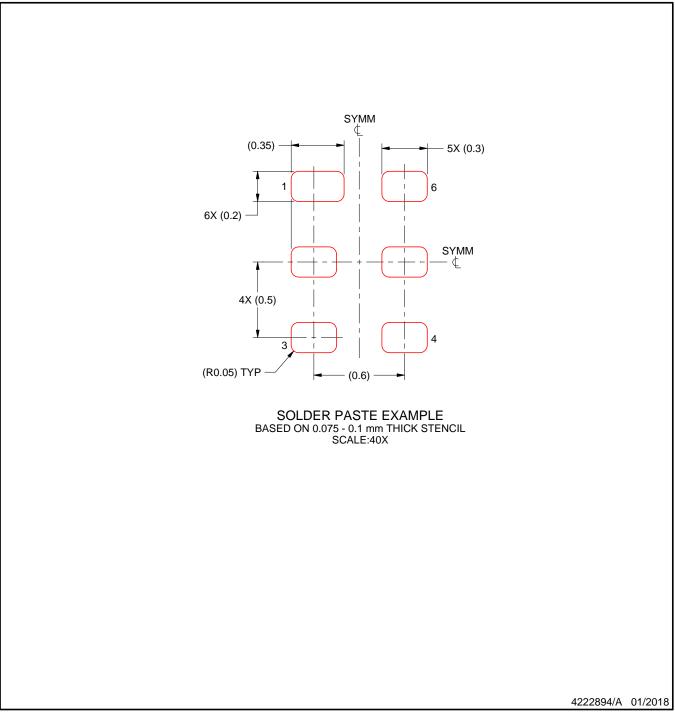
DRY0006A

EXAMPLE BOARD LAYOUT

USON - 0.6 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)


3. For more information, see QFN/SON PCB application report in literature No. SLUA271 (www.ti.com/lit/slua271).

DRY0006A

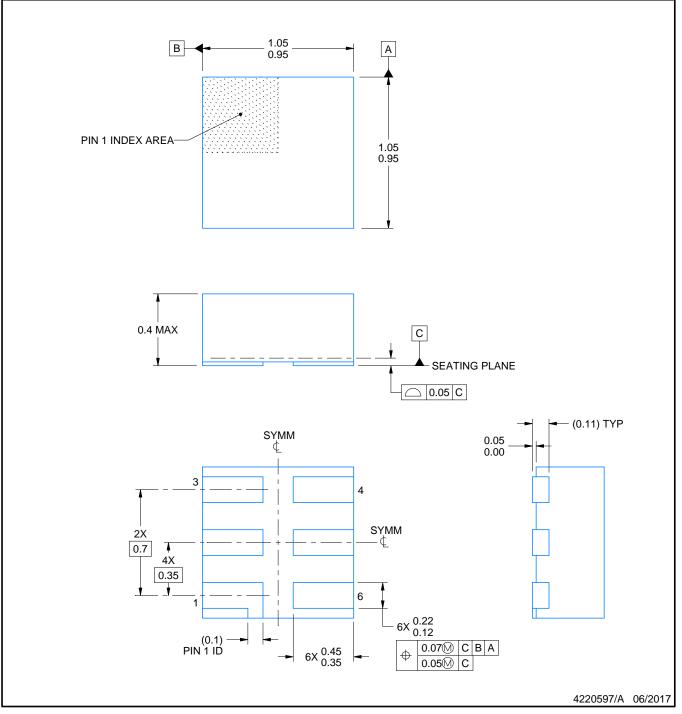
EXAMPLE STENCIL DESIGN

USON - 0.6 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

^{4.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

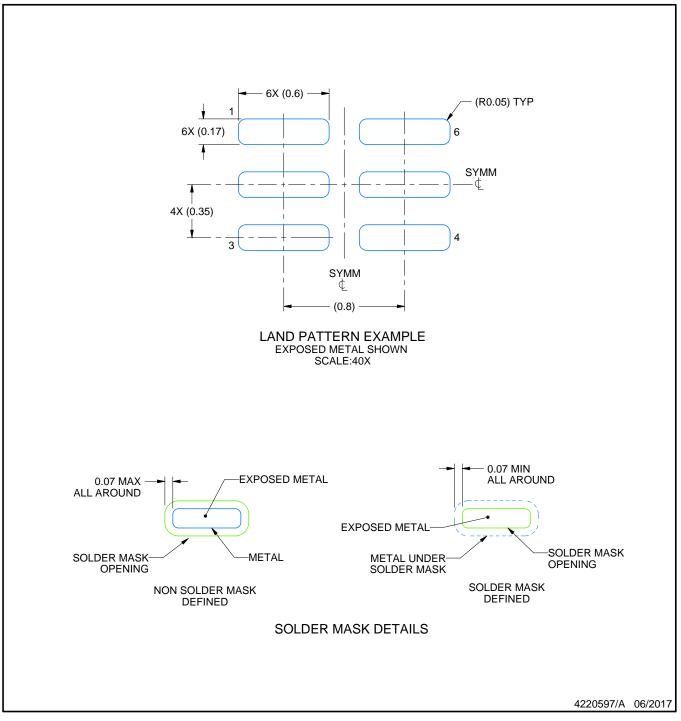

DSF0006A

PACKAGE OUTLINE

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing Per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC registration MO-287, variation X2AAF.

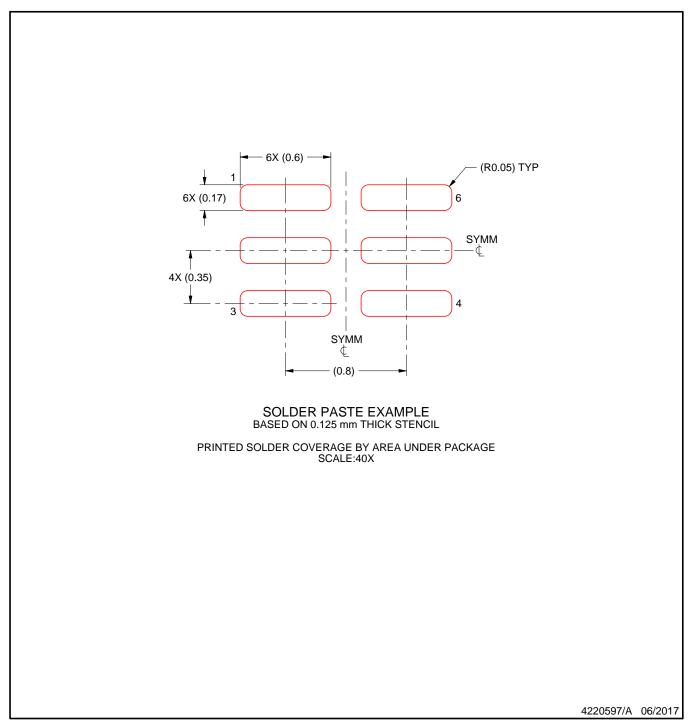
DSF0006A

EXAMPLE BOARD LAYOUT

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)


4. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

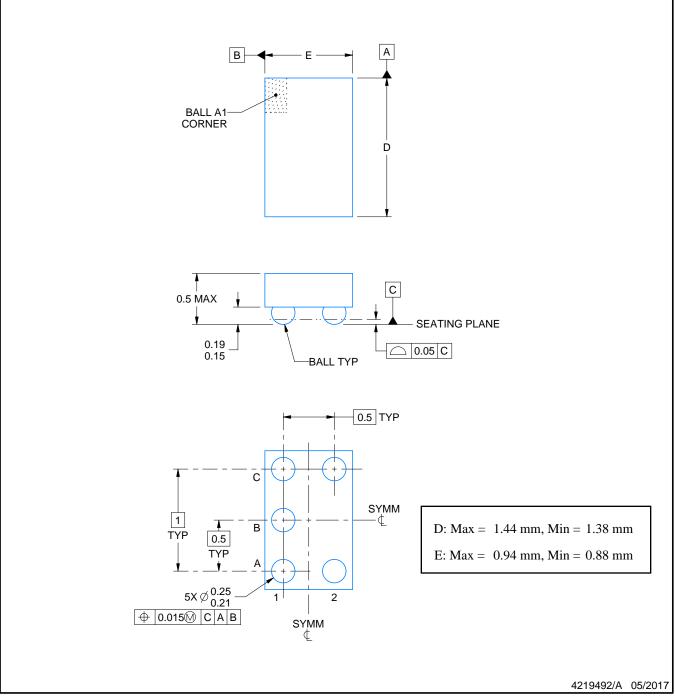
DSF0006A

EXAMPLE STENCIL DESIGN

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

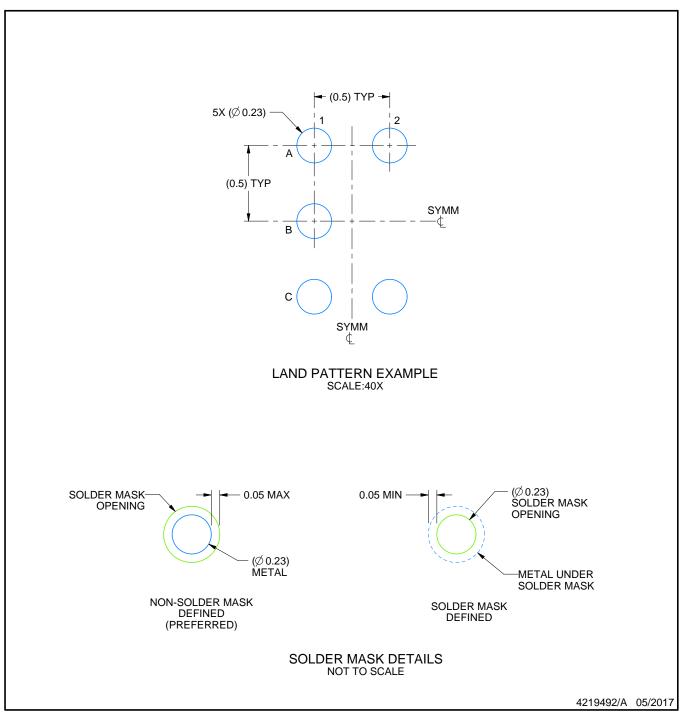

YZP0005

PACKAGE OUTLINE

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.2. This drawing is subject to change without notice.

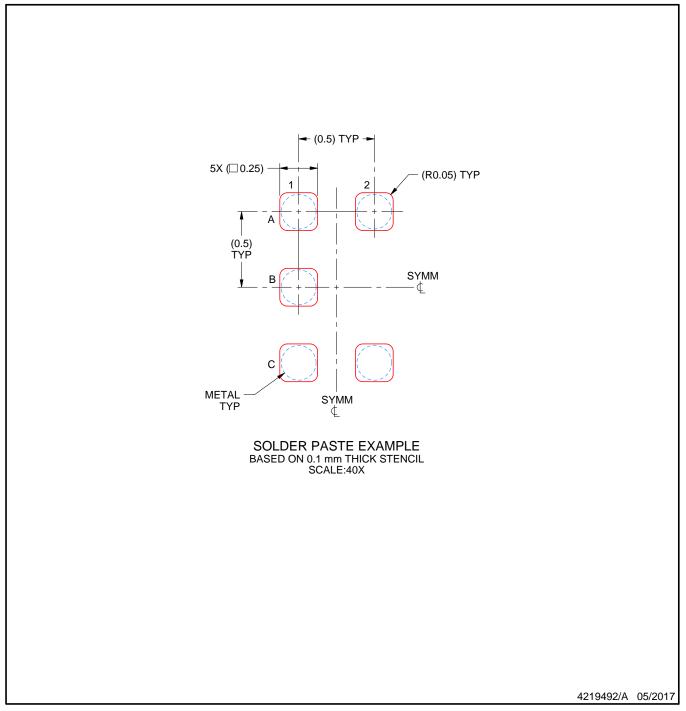
YZP0005

EXAMPLE BOARD LAYOUT

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)


3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).

YZP0005

EXAMPLE STENCIL DESIGN

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.