74AHC123 Dual Retriggerable Monostable Multivibrator with Reset

GENERAL DESCRIPTION

The 74AHC123 is a high-speed silicon-gate CMOS device. The device is a dual retriggerable monostable multivibrator designed for 2.0V to 5.5V V_{CC} operation.

The 74AHC123 edge-triggered multivibrator features with output pulse width control by three methods. In the first method, the $n\overline{A}$ input is low, and the nB input goes high. In the second method, the nB input is high, and the $n\overline{A}$ input goes low. In the third method, the $n\overline{A}$ input is low, the nB input is high, and the $n\overline{RD}$ input goes high.

Once triggered, the basic output pulse width may be extended by retriggering the gated active low-going edge ($n\overline{A}$) input or the active high-going edge (nB) input. By repeating this process, the output pulse period (nQ = high, $n\overline{Q}$ = low) can be made as long as desired. Alternatively an output delay can be terminated at any time by a low-going edge on $n\overline{R}D$ input, which also inhibits the triggering.

An internal connection from $n\overline{R}D$ to the input gate makes it possible to trigger the circuit by a high-going signal at $n\overline{R}D$ input as shown in function table. Figure 3 and Figure 4 illustrate pulse control by retriggering and early reset.

The output pulse duration is programmed by selecting external resistance (R_{EXT}) and capacitance (C_{EXT}) values.

When $C_{EXT} \ge 10$ nF, the typical output pulse width is defined as: $t_W = R_{EXT} \times C_{EXT}$ where $t_W =$ pulse width in ns; $R_{EXT} =$ external resistor in k Ω ; $C_{EXT} =$ external capacitor in pF. Schmitt-trigger action at all inputs makes the circuit highly tolerant to slower input rise and fall times.

FEATURES

- All Inputs Have a Schmitt-Trigger Action
- Inputs Accept Voltages Higher than V_{cc}
- Edge-Triggered from Active High or Active Low Gated Logic Inputs
- Retriggerable for Very Long Pulses up to 100% Duty Factor
- Direct Reset Terminates Output Pulse
- Operates with CMOS Input Levels
- -40°C to +125°C Operating Temperature Range
- Available in a Green SOIC-16 Package

FUNCTION TABLE

INPUT			OUTPUT		
nRD	nĀ	nB	nQ	nQ	
L	X	X	L	Н	
X	Н	X	L	Н [*]	
X	X	L	L	Н [*]	
Н	L	↑	Л	U	
Н	\downarrow	Н	Л	U	
1	L	Н	Л	U	

H = High Voltage Level

L = Low Voltage Level

↑ = Low-to-High Transition

 \downarrow = High-to-Low Transition

 \square = One High Level Output Pulse

□ = One Low Level Output Pulse

X = Don't Care

* If the monostable multivibrator was triggered before this condition was established, the pulse will continue as programmed.

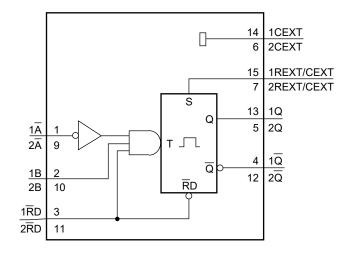
PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
74AHC123	SOIC-16	-40°C to +125°C	74AHC123XS16G/TR	74AHC123XS16 XXXXX	Tape and Reel, 2500

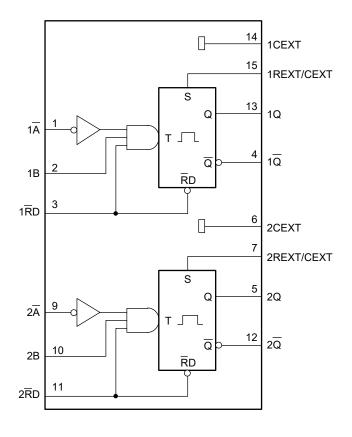
MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

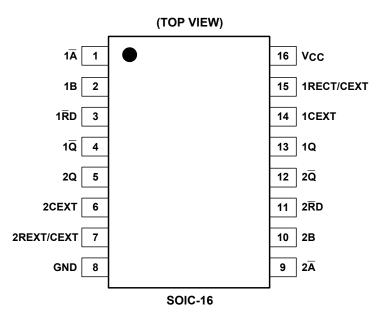
XXXXX


Vendor Code

Trace Code


—— Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.


LOGIC SYMBOL

LOGIC DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	FUNCTION
1, 9	1Ā, 2Ā	Negative-Edge Triggered Inputs.
2, 10	1B, 2B	Positive-Edge Triggered Inputs.
3, 11	1RD, 2RD	Direct Reset Low and Positive-Edge Triggered Inputs.
4, 12	1Q̄, 2Q̄	Active Low Outputs.
13, 5	1Q, 2Q	Active High Outputs.
14, 6	1CEXT, 2CEXT	External Capacitor Connections.
15, 7	1REXT/CEXT, 2REXT/CEXT	External Resistor and Capacitor Connections.
8	GND	Ground.
16	V _{CC}	Supply Voltage.

ELECTRICAL CHARACTERISTICS

(All typical values are measured at T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDI	TIONS	MIN	TYP	MAX	UNITS
		V _{CC} = 2.0V		1.5			V
High-Level Input Voltage	VIH	V _{CC} = 3.0V		2.1			V
		V _{CC} = 5.5V		3.85			V
		V _{CC} = 2.0V				0.5	V
High-Level Output Voltage	VIL	V _{CC} = 3.0V				0.9	V
		V _{CC} = 5.5V				1.65	V
			I _O = -50µA, V _{CC} = 2.0V		1.995		V
High-Level Output Voltage			I _o = -50µA, V _{cc} = 3.0V		2.995		V
	V _{он}	$V_{I} = V_{IH} \text{ or } V_{IL}$	I _o = -50µA, V _{cc} = 4.5V		4.495		V
			I _o = -4.0mA, V _{cc} = 3.0V		2.8		V
			I _o = -8.0mA, V _{cc} = 4.5V		4.2		V
High-Level Output Voltage V _{OH}		V _I = V _{IH} or V _{IL}	I _o = 50µA, V _{cc} = 2.0V		0.005		V
			I _o = 50µA, V _{cc} = 3.0V		0.005		V
	V _{OL}		I _o = 50µA, V _{cc} = 4.5V		0.005		V
			I _o = 4.0mA, V _{cc} = 3.0V		0.2		V
		I _o = 8.0mA, V _{CC} = 4.5V		0.3		V	
Innut Lookono Cument		$V_{cc} = 0V$ to 5.5V,	nREXT/CEXT ⁽¹⁾		0.01		μA
Input Leakage Current	II.	V ₁ = 5.5V or GND	Pins n \overline{A} , nB and n $\overline{R}D$		0.01		μA
		V_{CC} = 5.5V, V_I = V_{CC} or GN	ID, I ₀ = 0A		0.01		μA
Supply Current			V _{CC} = 3.0V		220		μA
	Icc	Active state (per circuit) ⁽¹⁾ $V_1 = V_{CC}$ or GND	V _{CC} = 4.5V		320		μA
			V _{CC} = 5.5V		400		μA
Input Capacitance	Cı		•		5		pF
Output Capacitance	Co						pF

NOTE:

1. Voltage on nREXT/CEXT = $0.5 \times V_{CC}$ and pin nREXT/CEXT in off-state during test.

DYNAMIC CHARACTERISTICS

(For test circuit, see Figure 1. All typical values are measured at $T_A = +25^{\circ}C$, $V_{CC} = 3.3V$ and $V_{CC} = 5.0V$ respectively, unless otherwise noted.)

PARAMETER	SYMBOL	CON	CONDITIONS				MAX	UNITS
				C _L = 15pF		7.6		ns
	$[ay (1)] t_{PD} \begin{bmatrix} n\overline{A} \\ see \\ n\overline{R}t \\ see \end{bmatrix}$ $n\overline{R}t \\ see \\ n\overline{R}t \\ see \\ $	$n\overline{A}$ and nB to nQ and $n\overline{Q}$,	$V_{CC} = 3.0V \text{ to } 3.6V$	C _L = 50pF		10.5		ns
		see Figure 2		C _L = 15pF		5.4		ns
			$V_{\rm CC} = 4.5V$ to 5.5V	C _L = 50pF		7.3		ns
				C _L = 15pF		8.2	7.6	ns
Draw a watio w Dalay (1)		$n\overline{R}D$ to nQ and $n\overline{Q}$,	$V_{CC} = 3.0V$ to 3.6V	C _L = 50pF		11.7		ns
Propagation Delay	ι _{PD}	see Figure 2		C _L = 15pF		5.6		ns
			$V_{CC} = 4.5V \ 10 \ 5.5V$	C _L = 50pF		8.1		ns
				$= 3.0V \text{ to } 3.6V \qquad C_{L} = 50\text{pF} \qquad 10.$ $= 4.5V \text{ to } 5.5V \qquad C_{L} = 15\text{pF} \qquad 5.4$ $C_{L} = 50\text{pF} \qquad 7.3$ $= 3.0V \text{ to } 3.6V \qquad C_{L} = 15\text{pF} \qquad 8.2$ $C_{L} = 50\text{pF} \qquad 11.$ $= 4.5V \text{ to } 5.5V \qquad C_{L} = 50\text{pF} \qquad 8.1$ $= 3.0V \text{ to } 3.6V \qquad C_{L} = 15\text{pF} \qquad 6.8$ $C_{L} = 50\text{pF} \qquad 8.1$ $= 3.0V \text{ to } 3.6V \qquad C_{L} = 15\text{pF} \qquad 6.8$ $C_{L} = 50\text{pF} \qquad 9.2$ $= 4.5V \text{ to } 5.5V \qquad C_{L} = 50\text{pF} \qquad 9.2$ $= 4.5V \text{ to } 5.5V \qquad C_{L} = 50\text{pF} \qquad 9.2$ $= 4.5V \text{ to } 5.5V \qquad C_{L} = 50\text{pF} \qquad 6.3$ $= 3.0V \text{ to } 3.6V \qquad 55$ $= 4.5V \text{ to } 5.5V \qquad 55$ $= 3.0V \text{ to } 3.6V \qquad 55$ $= 4.5V \text{ to } 5.5V \qquad 55$ $= 3.0V \text{ to } 3.6V \qquad C_{EXT} = 28\text{pF}, \qquad 230$ $= 4.5V \text{ to } 5.5V \qquad R_{EXT} = 10\text{k}\Omega \qquad 100$ $= 3.0V \text{ to } 3.6V \qquad C_{EXT} = 0.01\mu\text{F}, \qquad 100$ $= 3.0V \text{ to } 3.6V \qquad C_{EXT} = 10\mu\text{F}, \qquad 10$ $= 3.0V \text{ to } 3.6V \qquad C_{EXT} = 10\mu\text{F}, \qquad 10$ $= 3.0V \text{ to } 3.6V \qquad C_{EXT} = 100\text{pF}, \qquad 60$ $= 4.5V \text{ to } 5.5V \qquad R_{EXT} = 100\text{pF}, \qquad 60$ $= 4.5V \text{ to } 5.5V \qquad R_{EXT} = 100\text{pF}, \qquad 60$ $= 4.5V \text{ to } 5.5V \qquad R_{EXT} = 100\text{pF}, \qquad 60$	6.8		ns	
	ropagation Delay ⁽¹⁾ t_{PD} $n\bar{A}$ and nB to nQ and nQ, see Figure 2 nRD to nQ and nQ, see Figure 2 $n\bar{R}D$ to nQ and nQ (reset), see Figure 2 Inputs, nA = low, see Figure 2 Inputs, nA = low, see Figure 1 Inputs, nB = high, see Figure 2 Inputs, nRD = low, see Figure 2 Use Width t_W Inputs, nRD = low, see Figure 2 Inputs, nRD = low, see Figure 2 Inputs, nRD = low, see Figure 2 Inputs, nRD = low, see Figure 2 Inputs, nQ = low and nQ = high, CL = 50pF, see Figure 2, 3, 4, 5 ⁽²⁾ etrigger Time t_{RTRIG} $n\bar{A}$ to nB, CL = 50pF, see Figure 3 and Figure 5 ower Dissipation apacitance ⁽³⁾ C_{PD} $C_L = 50pF, f_I = 1MHz, V_{IN} = GN$ demail R_{EXT} $V_{CC} = 2.0V$	$v_{\rm CC} = 3.0 \text{to} 3.6 \text{v}$	C _L = 50pF		9.2		ns	
		see Figure 2		C _L = 15pF		4.8		ns
			$V_{CC} = 4.5V \ 10 \ 5.5V$	C _L = 50pF		6.3		ns
		Innute na - Iour and Figure 2	V _{CC} = 3.0V to 3.6V			5		ns
		inputs, nA – iow, see Figure 2	$V_{\rm CC}$ = 4.5V to 5.5V		5		ns	
	Inputs, nB = high, see Figu Inputs, nRD = low, see Figure 2	Innute nB = high and Figure 2	V _{CC} = 3.0V to 3.6V		5		ns	
Inputs, nRD = low, see Figure 2	inputs, nb – nigh, see Figure 2	V _{CC} = 4.5V to 5.5V			5		ns	
	V _{CC} = 3.0V to 3.6V		5		ns			
Dulas Width	4	see Figure 2	V _{CC} = 4.5V to 5.5V			5		ns
Puise Width	LW	ιw	V_{CC} = 3.0V to 3.6V	C _{EXT} = 28pF,		230		ns
	t_{PD} t_{PD} $\frac{n\overline{R}D \text{ to } nQ \text{ and } n\overline{Q}, \text{ see Figure 2}}{n\overline{R}D \text{ to } nQ \text{ and } n\overline{Q}, \text{ see Figure 2}}$ $\frac{n\overline{R}D \text{ to } nQ \text{ and } n\overline{Q} \text{ (reserved)}}{n\overline{R}D \text{ to } nQ \text{ and } n\overline{Q} \text{ (reserved)}}$ $\frac{n\overline{R}D \text{ to } nQ \text{ and } n\overline{Q} \text{ (reserved)}}{n\overline{R}D \text{ to } nQ \text{ and } n\overline{Q} \text{ (reserved)}}$ $\frac{n\overline{R}D \text{ to } nQ \text{ and } n\overline{Q} \text{ (reserved)}}{n\overline{R}D \text{ to } nQ \text{ and } n\overline{Q} \text{ (reserved)}}$ $\frac{n\overline{R}D \text{ to } nQ \text{ and } n\overline{Q} \text{ (reserved)}}{n\overline{R}D \text{ to } nR \text{ see Figure 2}}$ $\frac{n\overline{R}D \text{ to } nR \text{ see Figure 2}}{n\overline{R}}$ $\frac{n\overline{A} \text{ to } nB, C_{L} = 50 pF, \text{ see Figure 2}}{n\overline{A} \text{ to } nB, C_{L} = 50 pF, \text{ see Figure 2}}$ $\frac{C_{PD}}{C_{L} = 50 pF, f_{i} = 1 MHz, V_{IN} \text{ see Figure 3}}$ $\frac{V_{CC} = 2.0V}{V_{CC} > 3.0V}$	_	V_{CC} = 4.5V to 5.5V	$R_{EXT} = 2k\Omega$		230		ns
			V_{CC} = 3.0V to 3.6V	C _{EXT} = 0.01µF,		100		μs
	on Delay ⁽¹⁾ t_{PD} t_{PD} $\frac{n\bar{A} \text{ and nB to nQ and nQ, see Figure 2}}{n\bar{R}D \text{ to nQ and nQ, see Figure 2}}$ $\frac{n\bar{R}D \text{ to nQ and nQ} (reset), see Figure 2}$ $\frac{n\bar{R}D \text{ to nQ and nQ} (reset), see Figure 2}{n\bar{R}D \text{ to nQ and nQ} (reset), see Figure 2}$ $\frac{1nputs, n\bar{A} = low, see Figure 1}{nputs, n\bar{R}D = low, see Figure 2}$ $\frac{1nputs, n\bar{R}D = low, see Figure 2}{n\bar{R}D + high, C_L = 50pF, see Figure 2, 3, 4, 5}^{(2)}$ Time t_{RTRIG} rime t_{RTRIG} rime t_{RTRIG} R_{EXT} $\frac{V_{CC} = 2.0V}{V_{CC} > 3.0V}$ $V_{CC} = 2.0V$	see Figure 2. 3. 4. 5 $^{(2)}$	V_{CC} = 4.5V to 5.5V	$R_{EXT} = 10k\Omega$		100		μs
Important Propagation Delay (1) t_{PD} Important Resistance Important Resistance <td< td=""><td>5 , -, , -</td><td>$V_{\rm CC}$ = 3.0V to 3.6V</td><td>C_{EXT} = 0.1μF,</td><td></td><td>1</td><td></td><td>ms</td></td<>	5 , -, , -	$V_{\rm CC}$ = 3.0V to 3.6V	C _{EXT} = 0.1μF,		1		ms	
	opagation Delay (1) t_{PD} \vec{n} ni \vec{n} \vec{n} nise \vec{n} \vec{n} etrigger Time t_{RTRIG} \vec{n} etrigger Time t_{RTRIG} \vec{n} etrigger Time t_{REXT} \vec{n} etrigger Time t_{REXT} \vec{n} etrigger Time t_{REXT} \vec{n} etrigger Time t_{REXT} \vec{n} etrigger Time		V_{CC} = 4.5V to 5.5V	$R_{EXT} = 10k\Omega$		1		ms
			V_{CC} = 3.0V to 3.6V	C _{EXT} = 100pF,		60		ns
Potriggor Timo	+	$n\overline{A}$ to nB , $C_L = 50pF$,	V_{CC} = 4.5V to 5.5V	R _{EXT} = 1kΩ		55		ns
Reingger nine	I RTRIG	see Figure 3 and Figure 5	V_{CC} = 3.0V to 3.6V	C _{EXT} = 0.01µF,		0.5		μs
			V_{CC} = 4.5V to 5.5V	R _{EXT} = 1kΩ		0.5		μs
Power Dissipation Capacitance ⁽³⁾	C_{PD}	C_L = 50pF, f _i = 1MHz, V _{IN} = GND	to V _{CC}			110		pF
External Resistance	see Figure 2WidthInputs, $n\overline{A} = low$, see FigureInputs, $n\overline{B} = high$, see FigureInputs, $n\overline{B} = high$, see FigureInputs, $n\overline{B} = low$, see Figure 2Outputs, $n\overline{Q} = low$ and $nQ = high$, $C_L = 50pF$, see Figure 2, 3, 4, 5 (2)ger Time t_{RTRIG} $n\overline{A}$ to nB , $C_L = 50pF$, see Figure 3 and Figure 5Dissipation itance (3) C_{PD} $c_L = 50pF$, $f_i = 1MHz$, $V_{IN} = G$ $V_{CC} = 2.0V$ al w $v_{CC} = 2.0V$			5			kΩ	
	INEXT	V _{CC} > 3.0V			1			kΩ
External	C	V _{CC} = 2.0V						pF
Capacitance (4)	CEXT	V _{CC} > 3.0V						pF

NOTES:

1. t_{PD} is the same as t_{PLH} and t_{PHL} .

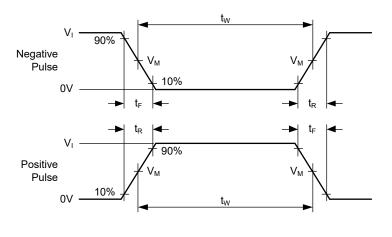
2. For $C_{EXT} \ge 10$ nF, the typical value of the pulse width t_W (µs) = C_{EXT} (nF) × R_{EXT} (k Ω).

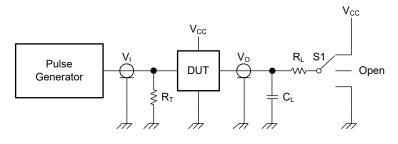
3. C_{PD} is used to determine the dynamic power dissipation (PD in $\mu W).$

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o})$ where:

 f_i = input frequency in MHz.

 f_o = output frequency in MHz.


 C_L = output load capacitance in pF.


 V_{CC} = supply voltage in Volts.

 $\Sigma(C_L \times V_{CC}^2 \times f_o) = Sum of outputs.$

4. C_{EXT} has no limits.

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions test circuit:

R_L = Load resistance.

 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

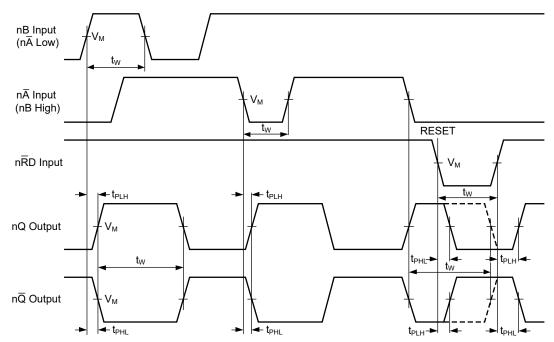
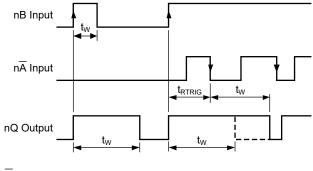

S1 = Test selection switch.

Figure 1. Test Circuit for Measuring Switching Times

Table 1. Test Conditions

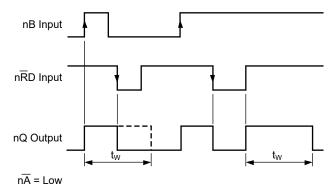
INF	TU	LO	S1 POSITION			
Vi	t _R , t _F	CL RL		t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
Vcc	3.0ns	15pF, 50pF	1kΩ	Open	GND	Vcc


WAVEFORMS

Test conditions are given in Table 1. Measurement points are given in Table 2.

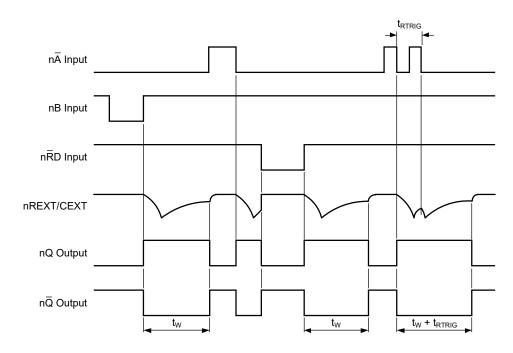
Figure 2. Propagation Delay Inputs ($n\overline{A}$, nB and $n\overline{R}D$) to Outputs (nQ and $n\overline{Q}$)

Table 2. Measurement Points				
INPUT	OUTPUT			
V _M	V _M			
0.5 × V _{CC}	0.5 × V _{CC}			



nRD = High

Test conditions are given in Table 1.


Figure 3. Output Pulse Control Using Retrigger Pulse

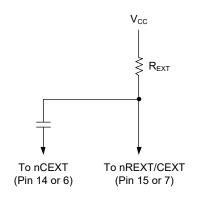
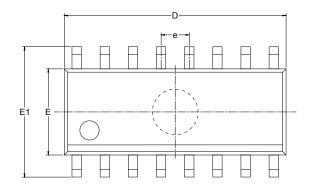
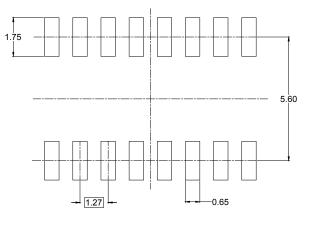
WAVEFORMS (continued)

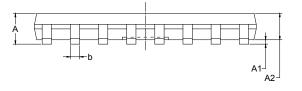
Test conditions are given in Table 1.

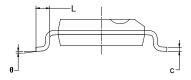
Test conditions are given in Table 1.

Figure 5. Input and Output Timing

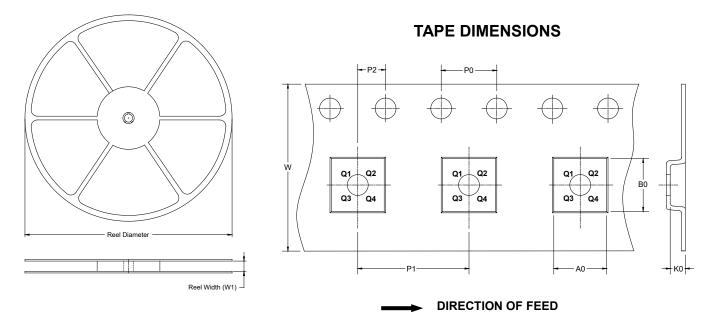
WAVEFORMS (continued)


Figure 6. Timing Component Connections


PACKAGE OUTLINE DIMENSIONS SOIC-16

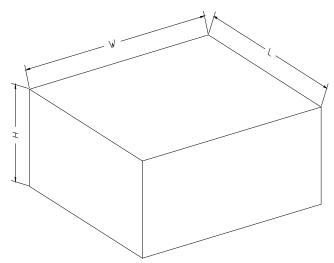
RECOMMENDED LAND PATTERN (Unit: mm)



Symbol		nsions meters	Dimensions In Inches		
- ,	MIN	MAX	MIN	MAX	
A	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.350 1.550 0.		0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	9.800	10.200	0.386	0.402	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.27 BSC		0.050	BSC	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOIC-16	13″	16.4	6.50	10.30	2.10	4.0	8.0	2.0	16.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)			Pizza/Carton	
13″	386	280	370	5	DD0002