500 mA, Very Low Dropout **Bias Rail CMOS Voltage Regulator**

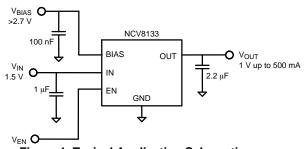
The NCV8133 is a 500 mA VLDO equipped with NMOS pass transistor and a separate bias supply voltage (VBIAS). The device provides very stable, accurate output voltage with low noise suitable for space constrained, noise sensitive applications. In order to optimize performance for battery operated portable applications, the NCV8133 features low I_O consumption. The XDFN6 1.2 mm x 1.2 mm package is optimized for use in space constrained applications.

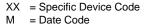
Features

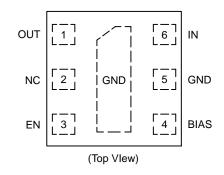
- Input Voltage Range: 0.8 V to 5.5 V
- Bias Voltage Range: 2.4 V to 5.5 V
- Fixed Output Voltage Device
- Output Voltage Range: 0.8 V to 2.1 V
- ±1.5% Accuracy over Temperature, 0.5% V_{OUT} @ 25°C
- Ultra-Low Dropout: Typ. 140 mV at 500 mA
- Very Low Bias Input Current of Typ. 80 μA
- Very Low Bias Input Current in Disable Mode: Typ. 0.5 μA
- Logic Level Enable Input for ON/OFF Control
- Output Active Discharge Option Available
- Stable with a 2.2 µF Ceramic Capacitor
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable; Device Temperature Grade 1: -40°C to +125°C Ambient Operating Temperature Range
- These are Pb–Free Devices

Typical Applications

- Automotive, Consumer and Industrial Equipment Point of Load Regulation
- Battery–powered Equipment
- FPGA, DSP and Logic Power Supplies
- Switching Power Supply Post Regulation
- Cameras, DVRs, STB and Camcorders




Figure 1. Typical Application Schematics



XX M

lo

ORDERING INFORMATION

See detailed ordering and shipping information on page 10 of this data sheet.

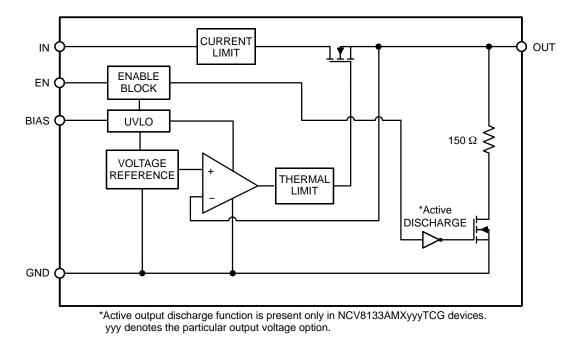


Figure 2. Simplified Schematic Block Diagram

PIN FUNCTION DESCRIPTION

Pin No. XDFN6	Pin Name	Description
1	OUT	Regulated Output Voltage pin
2	N/C	Not internally connected (Note 1)
3	EN	Enable pin. Driving this pin high enables the regulator. Driving this pin low puts the regulator into shutdown mode.
4	BIAS	Bias voltage supply for internal control circuits. This pin is monitored by internal Under-Voltage Lockout Circuit.
5	GND	Ground
6	IN	Input Voltage Supply pin
Pad		Should be soldered to the ground plane for increased thermal performance.

1. True no connect. Printed circuit board traces are allowable

ABSOLUTE MAXIMUM RATINGS

Symbol	Value	Unit
V _{IN}	-0.3 to 6	V
V _{OUT}	–0.3 to (V _{IN} +0.3) \leq 6	V
$V_{EN,} V_{BIAS}$	–0.3 to 6	V
t _{SC}	unlimited	S
TJ	150	°C
T _{STG}	-55 to 150	°C
ESD _{HBM}	2000	V
ESD _{MM}	200	V
	VIN VOUT VEN, VBIAS tsc TJ TSTG ESDHBM	$\begin{tabular}{ c c c c c } \hline V_{IN} & -0.3 \ to \ 6 \\ \hline V_{OUT} & -0.3 \ to \ (V_{IN}+0.3) \le 6 \\ \hline V_{EN}, \ V_{BIAS} & -0.3 \ to \ 6 \\ \hline t_{SC} & unlimited \\ \hline T_J & 150 \\ \hline T_{STG} & -55 \ to \ 150 \\ \hline ESD_{HBM} & 2000 \\ \hline \end{tabular}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 2. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.

3. This device series incorporates ESD protection (except OUT pin) and is tested by the following methods:

ESD Human Body Model tested per AEC-Q100-002

ESD Machine Model tested per AEC-Q100-003

Latchup Current Maximum Rating ≤ 150 mA per AEC–Q100–004.

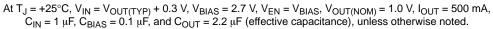
RECOMMENDED OPERATING CONDITIONS

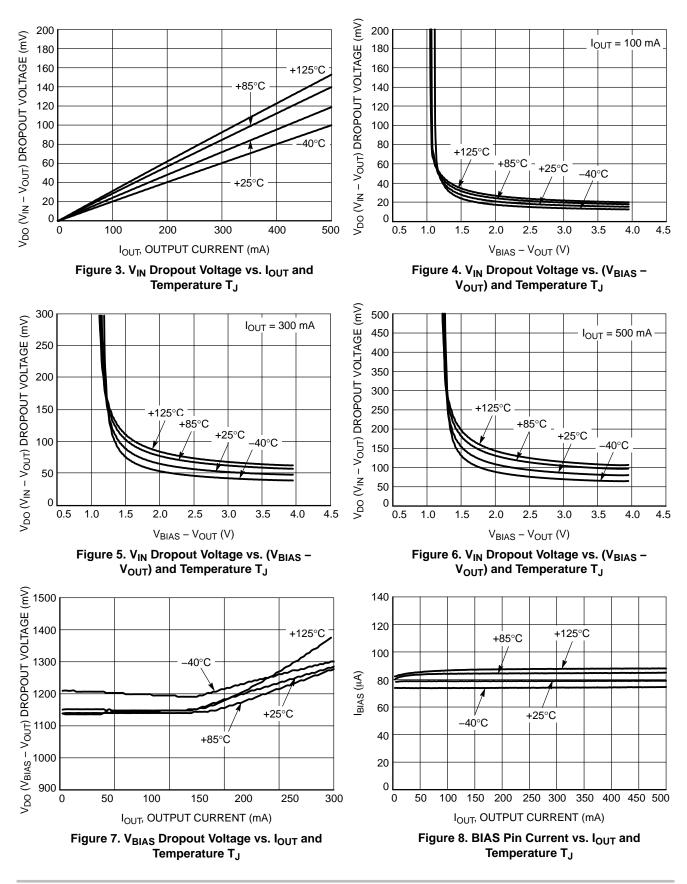
Rating	Symbol	Min	Max	Unit
Input Voltage	V _{IN}	(V _{OUT} + V _{DO_IN})	5.5	V
Bias Voltage	V _{BIAS}	$(V_{OUT} + 1.4) \ge 2.4$	5.5	V
Junction Temperature	TJ	-40	+125	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

THERMAL CHARACTERISTICS

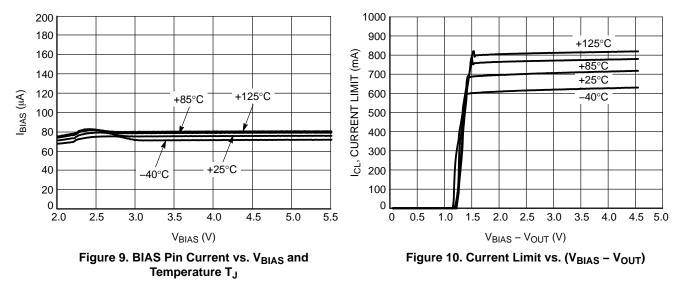
Rating	Symbol	Value	Unit
Thermal Characteristics, XDFN6 1.2 mm x 1.2 mm Thermal Resistance, Junction-to-Air	$R_{ heta JA}$	170	°C/W

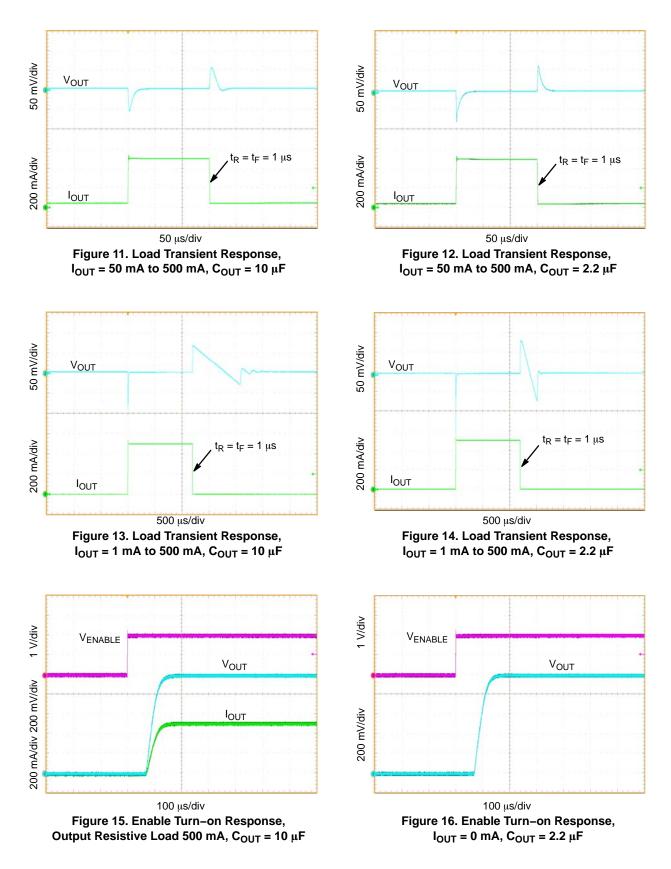

ELECTRICAL CHARACTERISTICS $-40^{\circ}C \le T_J \le 125^{\circ}C$; $V_{BIAS} = 2.7 \text{ V or } (V_{OUT} + 1.6 \text{ V})$, whichever is greater, $V_{IN} = V_{OUT(NOM)} + 1.6 \text{ V}$
0.3 V, $I_{OUT} = 1 \text{ mA}$, $V_{EN} = 1 \text{ V}$, unless otherwise noted. $C_{IN} = 1 \mu F$, $C_{OUT} = 2.2 \mu F$. Typical values are at $T_J = +25^{\circ}C$. Min/Max values are
for $-40^{\circ}C \le T_J \le 125^{\circ}C$ unless otherwise noted. (Note 4)


Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
Operating Input Voltage Range		V _{IN}	V _{OUT} + V _{DO}		5.5	V
Operating Bias Voltage Range		V _{BIAS}	(V _{OUT} + 1.40) ≥ 2.4		5.5	V
Undervoltage Lock-out	V _{BIAS} Rising Hysteresis	UVLO		1.6 0.2		V
Output Voltage Accuracy		V _{OUT}		±0.5		%
Output Voltage Accuracy	$\begin{array}{l} -40^{\circ}C \leq T_{J} \leq 125^{\circ}C, \ V_{OUT(NOM)} + 0.3 \ V \leq V_{IN} \leq \\ V_{OUT(NOM)} + 1.0 \ V, \ 2.7 \ V \ or \ (V_{OUT(NOM)} + \\ 1.6 \ V), \ whichever \ is \ greater < V_{BIAS} < 5.5 \ V, \\ 1 \ mA < I_{OUT} < 500 \ mA \end{array}$	V _{OUT}	-1.5		+1.5	%
V _{IN} Line Regulation	$V_{OUT(NOM)} + 0.3 \text{ V} \leq V_{IN} \leq 5.0 \text{ V}$	Line _{Reg}		0.01		%/V
V _{BIAS} Line Regulation	2.7 V or (V _{OUT(NOM)} + 1.6 V), whichever is greater < V _{BIAS} < 5.5 V	Line _{Reg}		0.01		%/V
Load Regulation	I _{OUT} = 1 mA to 500 mA	Load _{Reg}		1.5		mV
V _{IN} Dropout Voltage	I _{OUT} = 150 mA (Note 5)	V _{DO}		37	90	mV
	I _{OUT} = 500 mA (Note 5)	V _{DO}		140	300	1
V _{BIAS} Dropout Voltage	I_{OUT} = 500 mA, V_{IN} = V_{BIAS} (Notes 5, 6)	V _{DO}		1.1	1.5	V
Output Current Limit	V _{OUT} = 90% V _{OUT(NOM)}	I _{CL}	550	800	1100	mA
Bias Pin Operating Current	$V_{BIAS} = 2.7 V$	I _{BIAS}		80	110	μΑ
Bias Pin Disable Current	$V_{EN} \le 0.4 V$	I _{BIAS(DIS)}		0.5	1.5	μΑ
Vinput Pin Disable Current	$V_{EN} \le 0.4 V$	I _{VIN(DIS)}		0.5	1.5	μΑ
EN Pin Threshold Voltage	EN Input Voltage "H"	V _{EN(H)}	0.9			V
	EN Input Voltage "L"	V _{EN(L)}			0.4	1
EN Pull Down Current	V _{EN} = 5.5 V	I _{EN}		0.3	1.5	μΑ
Turn–On Time	From assertion of V_{EN} to V_{OUT} = 98% $V_{OUT(NOM)}$. $V_{OUT(NOM)}$ = 1.0 V	t _{ON}		150		μs
Power Supply Rejection Ratio	V_{IN} to $V_{OUT},$ f = 1 kHz, I_{OUT} = 150 mA, $V_{IN} \geq V_{OUT}$ +0.5 V	PSRR(V _{IN})		70		dB
	V_{BIAS} to V_{OUT} , f = 1 kHz, I_{OUT} = 150 mA, VIN \ge V_{OUT} +0.5 V	PSRR(V _{BIAS})		80		dB
Output Noise Voltage	V _{IN} = V _{OUT} +0.5 V, V _{OUT(NOM)} = 1.0 V, f = 10 Hz to 100 kHz	V _N		40		μV _{RMS}
Thermal Shutdown	Temperature increasing			160		°C
Threshold	Temperature decreasing			140		
Output Discharge Pull–Down	$V_{EN} \leq 0.4$ V, V_{OUT} = 0.5 V, NCV8133A options only	R _{DISCH}		150		Ω

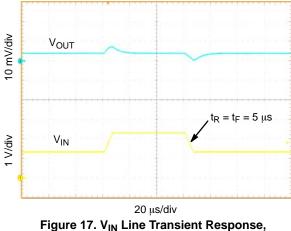
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

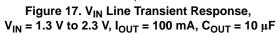
4. Performance guaranteed over the indicated operating temperature range by design and/or characterization. Production tested at T_A = 25°C. For output voltages below 0.9 V, V_{BIAS} dropout voltage does not apply due to a minimum Bias operating voltage of 2.4 V.


TYPICAL CHARACTERISTICS



At T_J = +25°C, V_{IN} = V_{OUT(TYP)} + 0.3 V, V_{BIAS} = 2.7 V, V_{EN} = V_{BIAS}, V_{OUT(NOM)} = 1.0 V, I_{OUT} = 500 mA, C_{IN} = 1 μ F, C_{BIAS} = 0.1 μ F, and C_{OUT} = 2.2 μ F (effective capacitance), unless otherwise noted.


TYPICAL CHARACTERISTICS


At $T_J = +25^{\circ}$ C, $V_{IN} = V_{OUT(TYP)} + 0.3$ V, $V_{BIAS} = 2.7$ V, $V_{EN} = V_{BIAS}$, $V_{OUT(NOM)} = 1.0$ V, $I_{OUT} = 500$ mA, $C_{IN} = 1 \mu$ F, $C_{BIAS} = 0.1 \mu$ F, and $C_{OUT} = 2.2 \mu$ F (effective capacitance), unless otherwise noted.

TYPICAL CHARACTERISTICS

At $T_J = +25^{\circ}$ C, $V_{IN} = V_{OUT(TYP)} + 0.3$ V, $V_{BIAS} = 2.7$ V, $V_{EN} = V_{BIAS}$, $V_{OUT(NOM)} = 1.0$ V, $I_{OUT} = 500$ mA, $C_{IN} = 1 \mu$ F, $C_{BIAS} = 0.1 \mu$ F, and $C_{OUT} = 2.2 \mu$ F (effective capacitance), unless otherwise noted.

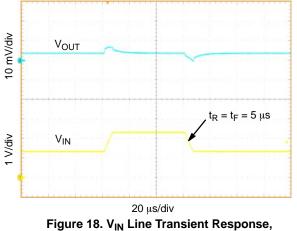


Figure 18. V_IN Line Transient Response, V_IN = 1.3 V to 2.3 V, I_OUT = 100 mA, C_OUT = 2.2 μF

APPLICATIONS INFORMATION

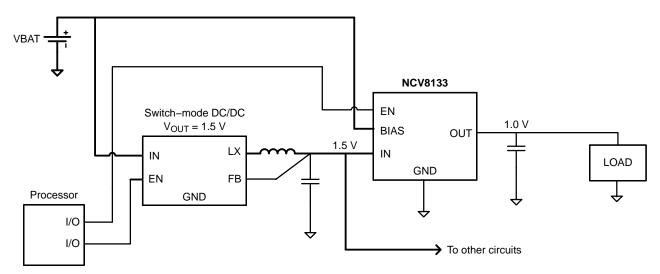


Figure 19. Typical Application: Low–Voltage DC/DC Post–Regulator with ON/OFF Functionality

The NCV8133 dual–rail very low dropout voltage regulator is using NMOS pass transistor for output voltage regulation from V_{IN} voltage. All the low current internal control circuitry is powered from the V_{BIAS} voltage.

The use of an NMOS pass transistor offers several advantages in applications. Unlike PMOS topology devices, the output capacitor has reduced impact on loop stability. Vin to Vout operating voltage difference can be very low compared with standard PMOS regulators in very low Vin applications.

The NCV8133 offers smooth monotonic start-up. The controlled voltage rising limits the inrush current.

The Enable (EN) input is equipped with internal hysteresis.

NCV8133 is a Fixed Voltage linear regulator.

Dropout Voltage

Because of two power supply inputs V_{IN} and V_{BIAS} and one V_{OUT} regulator output, there are two Dropout voltages specified.

The first, the V_{IN} Dropout voltage is the voltage difference ($V_{IN} - V_{OUT}$) when V_{OUT} starts to decrease by percent specified in the Electrical Characteristics table. V_{BIAS} is high enough; specific value is published in the Electrical Characteristics table.

The second, V_{BIAS} dropout voltage is the voltage difference ($V_{BIAS} - V_{OUT}$) when V_{IN} and V_{BIAS} pins are joined together and V_{OUT} starts to decrease.

Input and Output Capacitors

The device is designed to be stable for ceramic output capacitors with Effective capacitance in the range from 2.2 μ F to 10 μ F. The device is also stable with multiple capacitors in parallel, having the total effective capacitance in the specified range.

In applications where no low input supplies impedance available (PCB inductance in V_{IN} and/or V_{BIAS} inputs as

example), the recommended $C_{IN} = 1 \ \mu F$ and $C_{BIAS} = 0.1 \ \mu F$ or greater. Ceramic capacitors are recommended. For the best performance all the capacitors should be connected to the NCV8133 respective pins directly in the device PCB copper layer, not through vias having not negligible impedance.

When using small ceramic capacitor, their capacitance is not constant but varies with applied DC biasing voltage, temperature and tolerance. The effective capacitance can be much lower than their nominal capacitance value, most importantly in negative temperatures and higher LDO output voltages. That is why the recommended Output capacitor capacitance value is specified as Effective value in the specific application conditions.

Enable Operation

The enable pin will turn the regulator on or off. The threshold limits are covered in the electrical characteristics table in this data sheet. If the enable function is not to be used then the pin should be connected to V_{IN} or V_{BIAS} .

Current Limitation

The internal Current Limitation circuitry allows the device to supply the full nominal current and surges but protects the device against Current Overload or Short.

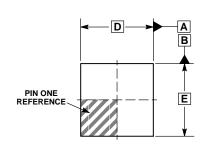
Thermal Protection

Internal thermal shutdown (TSD) circuitry is provided to protect the integrated circuit in the event that the maximum junction temperature is exceeded. When TSD activated, the regulator output turns off. When cooling down under the low temperature threshold, device output is activated again. This TSD feature is provided to prevent failures from accidental overheating.

Power Dissipation

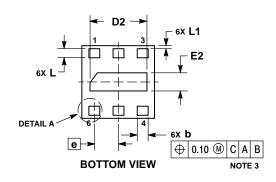
The maximum power dissipation supported by the device is dependent upon board design and layout. Mounting pad configuration on the PCB, the board material, and the ambient temperature affect the rate of junction temperature rise for the part. For reliable operation, junction temperature should be limited to $+125^{\circ}$ C.

ORDERING INFORMATION

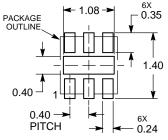

Device	Nominal Output Voltage	Marking	Option	Package	Shipping [†]
NCV8133BMX080TCG	0.80 V	JL			
NCV8133BMX100TCG	1.00 V	JM			
NCV8133BMX110TCG	1.10 V	JD			
NCV8133BMX120TCG	1.20 V	JE	Non–Active Discharge	XDFN6 (Pb–Free)	3000 / Tape & Reel
NCV8133BMX130TCG	1.30 V	JN		(1.2.1.00)	
NCV8133BMX150TCG	1.50 V	JF	1		
NCV8133BMX180TCG	1.80 V	JG			

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


To order other package and voltage variants, please contact your ON Semiconductor sales representative


PACKAGE DIMENSIONS

XDFN6 1.20x1.20, 0.40P CASE 711AT **ISSUE C**


DETAIL A OPTIONAL CONSTRUCTION

NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION 6 APPLIES TO THE PLATED TERMINALS. 4. COPLANARITY APPLIES TO THE PAD AS WELL AS THE TERMINALS.

WELLE AG THE TERMINALO.						
	MILLIMETERS					
DIM	MIN TYP MAX					
Α	0.30	0.37	0.45			
A1	0.00	0.03	0.05			
b	0.13	0.23				
D	1.15	1.20	1.25			
D2	0.84	1.04				
Е	1.15	1.25				
E2	0.20	0.30	0.40			
e	0.40 BSC					
Ĺ	0.15	0.25				
L1	0.00	0.05	0.10			

RECOMMENDED **MOUNTING FOOTPRINT***

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.