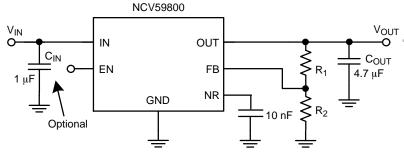
1 A Low Noise, RF LDO Voltage Regulator


The NCV59800 is a family of 1 A low-dropout linear regulators (LDOs) offering high power-supply ripple rejection (PSRR) and ultra-low output noise. This series of LDOs uses an advanced BiCMOS process to achieve very good electrical performance. It is an ideal choice for noise sensitive Analog RF Front-Ends used in Telecom Equipment. The NCV59800 is available in the 3 mm x 3 mm DFN8 package.

Features

- Operating Input Voltage Range: 2.2 V to 5.5 V
- Output Voltage Range:
- 0.8 V to 5 V (adjustable)
- Quiescent Current typ. 60 µA
- Low Dropout: 200 mV typ. at 1 A, $V_{OUT} = 2.5 V$
- ±2.5% V_{OUT} Accuracy across Load/Line/Temperature
- Stable with Small 4.7 µF Ceramic Capacitors
- Very–Low Noise: Typically 15 μ V_{RMS}/V from 100 Hz to 100 kHz
- Over-Current and Thermal Shutdown Protection
- Available in 3 x 3 mm DFN8 Package
- Device Temperature Grade 1: -40°C to 125°C Ambient Operating Temperature Range
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Telecom Infrastructure
- Automotive Infotainment Systems
- High–Speed I/F (PLL/VCO)

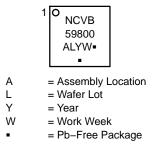
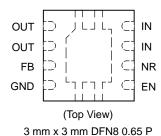


Figure 1. Typical Application Schematics


3 x 3 mm CASE 506DB

MARKING DIAGRAM

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

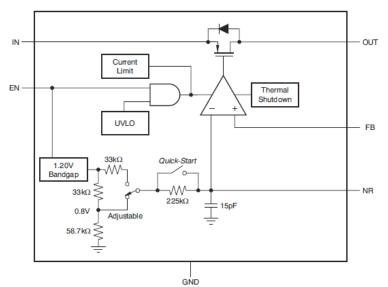


Figure 2. Internal Block Diagram

Table 1.	PIN F	UNCTION	DESCRIPTION
----------	-------	---------	-------------

Pin No. DFN8	Pin Name	Description
7,8	IN	Unregulated input supply.
4, EPAD	GND	Ground.
5	EN	Driving the enable pin (EN) high turns on the regulator. Driving this pin low puts the regulator into shutdown mode.
6	NR	Connect an external capacitor between this pin and ground to reduce the output noise to very low levels. The capacitor slows down the V _{OUT} ramp as well (soft–start). Max recommended C _{NR} value is 0.47 μF
3	FB	This pin is the input to the control loop error amplifier and is used to set the output voltage of the device.
1,2	OUT	Regulator output. A 4.7 μ F to 100 μ F capacitor is required for stability.

Table 2. ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage (Note 1)	IN	6.0	V
Output Voltage	OUT	–0.3 to (V _{IN} + 0.3) \leq 6.0	V
Enable Input Voltage	EN	-0.3 to 6.0	V
FB Input Voltage	FB	-0.3 to 6.0	V
Output Current	I _{OUT}	Internally Limited	mA
Maximum Junction Temperature	T _{J(MAX)}	150	°C
Operating Ambient Temperature	T _A	-40 to +125	°C
Storage Temperature	T _{STG}	-55 to 150	°C
ESD Capability, Human Body Model (Note 2)	ESD _{HBM}	2000	V
ESD Capability, Machine Model (Note 2)	ESD _{MM}	200	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.

This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per AEC–Q100–002 (EIA/JESD22–A114) ESD Machine Model tested per AEC–Q100–003 (EIA/JESD22–A115) 2.

Latchup Current Maximum Rating tested per JEDEC standard: JESD78

Table 3. RECOMMENDED OPERATING RANGES (Note 3)

Parameter	Symbol	Min	Max	Unit
Input Voltage	V _{IN}	$(V_{OUT} + V_{DO}) \ge 2.2$	5.5	V
Junction Temperature	TJ	-40	+125	°C

3. Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 4. THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Characteristics, DFN8 3 mm x 3 mm Thermal Resistance, Junction-to-Air (Note 4)	R_{\thetaJA}	52	°C/W

4. The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.

Table 5. ELECTRICAL CHARACTERISTICS Over the operating temperature range of $T_J = -40^{\circ}$ C to $+125^{\circ}$ C, $V_{IN} = (V_{OUT(NOM)} + 0.5 V)$ or 2.2 V (whichever is greater), $I_{OUT} = 1$ mA, $V_{EN} = 2.2 V$, $C_{OUT} = 4.7 \mu$ F, and $C_{NR} = 0.01 \mu$ F, unless otherwise noted. NCV59800 Adjustable device is tested at $V_{OUT} = 0.8 V$ and $V_{OUT} = 5.0 V$. Typical values are at $T_J = +25^{\circ}$ C.

Parameter	Test Condition	s	Symbol	Min	Тур	Max	Unit
Input Voltage Range			V _{IN}	$(V_{OUT}+V_{DO}) \ge 2.2$		5.5	V
Internal Reference			V _{NR}		0.8		V
Output Voltage	Adjustable Option		V _{OUT}	0.8		5.0	V
Output Voltage Accuracy (Note 5)	$\begin{array}{l} V_{OUT} + 0.5 \ V \leq V_{IN} \leq 5.5 \ V, \ V \\ 1 \ mA \leq I_{OUT} \leq 1 \ A \end{array}$	′ _{IN} ≥ 2.2 V	Vout	-2.5	±0.3	+2.5	%
Line Regulation	V_{OUT} + 0.5 V \leq V_{IN} \leq 5.5 V, V I_{OUT} = 1 mA	′ _{IN} ≥ 2.2 V	Δ Vout/ Δ Vin		150		μV/V
Load Regulation	$1 \text{ mA} \le I_{OUT} \le 1 \text{ A}$		ΔV out/ ΔI out		2.0		μV/mA
Dropout Voltage	V_{OUT} + 0.5 V \leq V_{IN} \leq 5.5 V, V I_{OUT} = 500 mA, V_{FB} = GND	′ _{IN} ≥ 2.2 V	V _{DO}			250	mV
	V_{OUT} + 0.5 V \leq V $_{IN}$ \leq 5.5 V, V $_{IN}$ \geq 2.5 V I_{OUT} = 750 mA, V $_{FB}$ = GND					350	mV
	V_{OUT} + 0.5 V \leq V_{IN} \leq 5.5 V, V_{IN} \geq 2.5 V I_{OUT} = 1 A, V_{FB} = GND					500	mV
Output Current Limit	$V_{OUT} = 0.85 V_{OUT(NOM)}, V_{IN} \ge 3.3 V$		I _{CL}		1.6		А
Ground Pin Current	I _{OUT} = 0.1 mA		I _{GND}		60	100	μΑ
	I _{OUT} = 1 A					500	μΑ
Shutdown Current (I _{GND})	$V_{EN} \leq 0.4$ V, $V_{IN} \geq 2.2$ V, R_L = 1 kΩ, $0^\circ C \leq T_J \leq 85^\circ C$		I _{SHDN}		0.2	2.0	μΑ
Feedback Pin Current	V_{IN} = 5.5 V, V_{FB} = 0.8 V				0.02	1.0	μΑ
Power Supply Rejection Ratio	I _{OUT} = 750 mA, V _{OUT} = 3.3 V, V _{IN} = 4.3 V	f = 100 Hz f = 1 kHz f = 1 MHz	PSRR		77 63 27		dB
Output Noise Voltage	BW = 100 Hz–100 kHz, I _{OUT} = 100 mA, C _{NR} = 100 nF, V _{IN} = 4.3 V, V _{OUT} = 3.3 V		V _N		15 x V _{OUT}		μV _{RMS}
Enable Input Current	$V_{IN} = V_{EN} = 5.5 \text{ V}$		I _{EN}		0.02	1.0	μΑ
Soft-Start Charging Current	V _{NR} = 0.5 V		I _{SS}		7.2		μΑ
EN Pin Threshold Voltage	EN Input Voltage "H"		V _{ENH}	1.2			V
	EN Input Voltage "L"		V _{ENL}			0.4	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

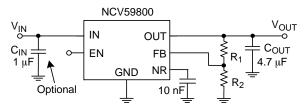
5. As for NCV59800 (adjustable); it does not include external resistor tolerances and it is not tested at this condition:

 V_{OUT} = 0.8 V, 4.5 V \leq V_{IN} \leq 5.5 V, and 750 mA \leq I_{OUT} \leq 1 A because of power dissipation higher than maximum rating of the package.

Table 5. ELECTRICAL CHARACTERISTICS Over the operating temperature range of $T_J = -40^{\circ}$ C to +125°C, $V_{IN} = (V_{OUT(NOM)} + 0.5 \text{ V})$ or 2.2 V (whichever is greater), $I_{OUT} = 1 \text{ mA}$, $V_{EN} = 2.2 \text{ V}$, $C_{OUT} = 4.7 \mu$ F, and $C_{NR} = 0.01 \mu$ F, unless otherwise noted. NCV59800 Adjustable device is tested at $V_{OUT} = 0.8 \text{ V}$ and $V_{OUT} = 5.0 \text{ V}$. Typical values are at $T_J = +25^{\circ}$ C.

Parameter	Test Conditions		Symbol	Min	Тур	Max	Unit
Start-Up Time	V _{OUT(NOM)} = 3.3 V V _{OUT} = 0% to 90%	C _{NR} = 10 nF	t _{STR}		1.0		ms
	VOUT(NOM) R _L = 3.3kΩ, C _{OUT} =4.7 μ F	C _{NR} = 100 nF			10		ms
Undervoltage Lockout	V_{IN} rising, $R_L = 1 \ k\Omega$		UVLO	1.86	2.0	2.1	V
UVLO Hysteresis	V_{IN} falling, $R_L = 1 \ k\Omega$				75		mV
Thermal Shutdown	Shutdown, temperature increasing		T _{SD_TEMP}		160		°C
Thermal Shutdown Recovery	Reset, temperature decreasing		T _{SD_HYST}		140		
T _J Operating Range				-40		+125	°C

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


5. As for NCV59800 (adjustable); it does not include external resistor tolerances and it is not tested at this condition:

 $V_{OUT} = 0.8 \text{ V}$, 4.5 $\text{V} \le V_{IN} \le 5.5 \text{ V}$, and 750 mA $\le I_{OUT} \le 1 \text{ A}$ because of power dissipation higher than maximum rating of the package.

APPLICATIONS INFORMATION

General Information

The NCV59800 regulator is equipped with Noise Reduction pin (NR) for noise sensitive applications. A noise reduction capacitor (C_{NR}) at the NR pin bypasses noise generated by the bandgap reference. This family of regulators offers sub–bandgap output voltages, current limit, and thermal protection, and is fully specified from –40°C to +125°C. assuming resistors with zero error. For the actual design, pay attention to any resistor error factors. Figure 3 gives the Typical Application Schematics.

Figure 3. Typical Application Schematics

Output Voltage Setting

The output voltage can be adjusted from 0.8 V to 5.0 V using resistors divider between the output and the FB input. The values of R1 and R2 can be calculated for any voltage using the following formula:

$$V_{OUT} = 0.8 V \left(1 + \frac{R_1}{R_2} \right)$$

Recommended resistor values for frequently used voltages can be found in the Table 6.

Capacitors Selection

Although an input capacitor is not required for stability, it is good analog design practice to connect a 0.1 μ F to 1.0 μ F low equivalent series resistance (ESR) capacitor across the input supply near the regulator. The NCV59800 is designed to be stable with standard ceramic output capacitors of capacitance values 4.7 μ F up to 100 μ F. This device is evaluated using a 4.7 μ F/10 V, 10% tolerance, X5R type Ceramic Capacitors of 0805 size.

X5R- and X7R-type capacitors are highly recommended because they have minimal variation in value and ESR over temperature.

Startup Response

The C_{NR} serves not only for noise reduction. During Start–Up the C_{NR} capacitor works like the Soft Start timing capacitor. The controlled monotonic ramping of Voltage Reference (adjustable Soft–Start) is limiting the Inrush Current .

Table 6. RECOMMENDED 1% FEEDBACK RESISTOR VALUES FOR FREQUENTLY USED NOMINAL OUTPUT VOLTAGES

νουτ	R ₁	R ₂
0.8 V	$0 \ \Omega$ (Short)	10.0 kΩ
1.0 V	2.49 kΩ	10.0 kΩ
1.2 V	4.99 kΩ	10.0 kΩ
1.5 V	8.87 kΩ	10.0 kΩ
1.8 V	12.5 kΩ	10.0 kΩ
2.5 V	21.0 kΩ	10.0 kΩ
3.3 V	30.9 kΩ	10.0 kΩ
5.0 V	52.3 kΩ	10.0 kΩ

Power Dissipation

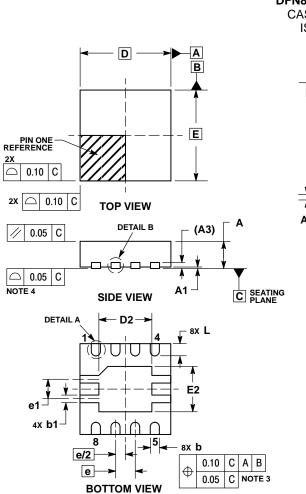

The maximum power dissipation supported by the device is dependent upon board design and layout. Mounting pad configuration on the PCB, the board material, and the ambient temperature affect the rate of junction temperature rise for the part. For reliable operation junction temperature should be limited to $+125^{\circ}$ C.

Table 7. ORDERING INFORMATION

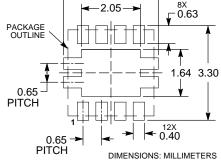
Device	Output Voltage	Marking	Package	Shipping [†]
NCV59800BMNADJTBG	ADJ	NCVB 59800	DFN8 3x3 (Non–Wettable Flank) (Pb–Free)	3000/ Tape & Reel
NCV59800BMWADJTBG	ADJ	NCVBW 59800	DFN8 3x3 (Wettable Flank) (Pb–Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
 *To order other package and voltage variants, please contact your ON Semiconductor sales representative.

PACKAGE DIMENSIONS

DFN8, 3x3, 0.65P CASE 506DB **ISSUE A** DETAIL A

DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM THE TERMINAL TIP. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. 4. MILLIMETERS A0.801.00A10.000.05 A3 0.20 REF b 0.25 0.35 b1 0.20 0.30 D 3.00 BSC D2 1.65 1.85 3.00 BSC 1.40 1.60 E E2 0.65 BSC е
 e1
 0.65 REF


 L
 0.30
 0.50

 L1
 0.00
 0.15

2. 3.

NOTES: 1. DIMENSIONING AND TOLERANCING PER

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.