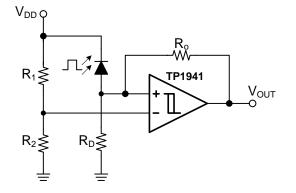
Features

- Fast Response Time: 68 ns Propagation Delay
- Ultra-Low Supply Current: 46 µA per Channel
- Offset Voltage: ± 3.0 mV Maximum
- Offset Voltage Temperature Drift: 0.3 µV/°C
- Input Bias Current: 6 pA Typical
- Internal Hysteresis Ensures Clean Switching
- Input Common-Mode Range Extends 200 mV
- No Phase Reversal for Overdriven Inputs
- Push-Pull, CMOS/TTL Compatible Output
- Shut-down Function (TP1941N Only)
- Output Latch (TP1941NU Only)
- Down to 1.8V Supply Voltage: 1.8V to 5.5V
- Green, Space-Saving SC70 Package Available

Applications

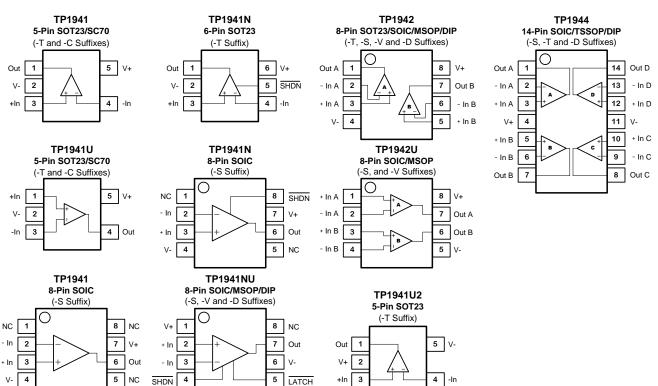
- High-speed Line or Digital Line Receivers
- High Speed Sampling Circuits
- Peak and Zero-crossing Detectors
- Threshold Detectors/Discriminators
- Sensing at Ground or Supply Line
- Logic Level Shifting or Translation
- Window Comparators
- IR Receivers
- Clock and Data Signal Restoration
- Telecom, Portable Communications
- Portable and Battery Powered Systems

68ns, 1.8V, Ultra-low Power, RRI, Push-Pull Output Comparators **Description**


The 3PEAK INCORPORATED TP194x families of CMOS/TTL compatible comparators are offered in single, dual, and quad configurations, and are exceptionally versatile and easy to use.

The TP194x incorporate 3PEAK's proprietary and patented design techniques to achieve the ultimate combination of high-speed (68ns propagation delay under 1.8~5.5V wide supply range) and low power consuming (46µA quiescent current per comparator). These comparators are optimized for low power 1.8V, single-supply applications with greater than rail-torail input operation, and also operate with ±0.9V to ±2.75V dual supplies. The input common mode voltage range extends 200mV below ground and 200mV above supply, allowing both ground and supply sensing. The internal input hysteresis eliminates output switching due to internal input noise voltage, reducing current draw. The push-pull output supports rail-to-rail output swing, and interfaces with CMOS/TTL logic. The output toggle frequency can reach a typical of 4 MHz while limiting supply current surges and dynamic power consumption during switching.

The TP1941 single comparators are available in shout-down function, output latch version, and the tiny SC70/SOT23 package for space-conservative designs. All devices are specified for the temperature range of -40° C to $+85^{\circ}$ C.


3PEAK and the 3PEAK logo are registered trademarks of 3PEAK INCORPORATED. All other trademarks are the property of their respective owners.

The TP1941 Comparator in IR Receivers

68ns, 1.8V, Ultra-low Power, RRI, Push-Pull Output Comparators

Pin Configuration (Top View)

Order Information

Order Number	Package	Transport Media, Quantity	Marking Information	
TP1941-TR	5-Pin SOT23	Tape and Reel, 3000	C4T	
TP1941-CR	5-Pin SC70	Tape and Reel, 3000	C4C	
TP1941U-CR	5-Pin SC70	Tape and Reel, 3000	C4U	
TP1942-SR	8-Pin SOIC	Tape and Reel, 4000	1942S	
TP1942-VR	8-Pin MSOP	Tape and Reel, 3000	1942V	

Absolute Maximum Ratings Note 1

Supply Voltage: V⁺ – V⁻6.0V	Operating Temperature Range40°C to 85°C
Input Voltage $V^ 0.3$ to $V^+ + 0.3$	Maximum Junction Temperature 150°C
Input Current: +IN, –IN, Note 2±10mA	Storage Temperature Range –65°C to
Output Current: OUT ±45mA	150°C
Output Short-Circuit Duration Note 3 Indefinite	Lead Temperature (Soldering, 10 sec) 260°C

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: The inputs are protected by ESD protection diodes to each power supply. If the input extends more than 500mV beyond the power supply, the input current should be limited to less than 10mA.

Note 3: A heat sink may be required to keep the junction temperature below the absolute maximum. This depends on the power supply voltage and how many amplifiers are shorted. Thermal resistance varies with the amount of PC board metal connected to the package. The specified values are for short traces connected to the leads.

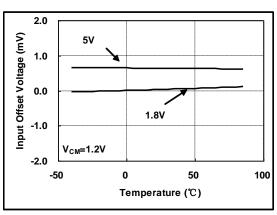
ESD, Electrostatic Discharge Protection

Symbol	Parameter	Condition	Minimum Level	Unit
HBM	Human Body Model ESD	ANSI/ESDA/JEDEC JS-001	4500	kV
CDM	Charged Device Model ESD	ANSI/ESDA/JEDEC JS-002	1500	kV

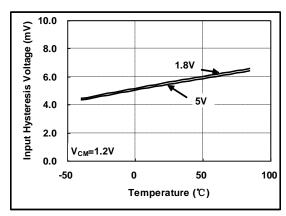
Electrical Characteristics

The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 27^{\circ}$ C. $V_{DD} = +1.8V$ to +5.5V, $V_{IN+} = V_{DD}$, $V_{IN-} = 1.2V$, $R_{PU}=10k\Omega$, $C_L=15pF$.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{DD}	Supply Voltage		•	1.8		5.5	V
Vos	Input Offset Voltage Note 1	V _{CM} = 1.2V		-3	±0.6	+3	mV
Vos TC	Input Offset Voltage Drift Note 1	V _{CM} = 1.2V			0.3		μV/°C
VHYST	Input Hysteresis Voltage Note 1	V _{CM} = 1.2V		4	6	8	mV
V _{HYST} TC	Input Hysteresis Voltage Drift Note 1	V _{CM} = 1.2V			20		µV/°C
lв	Input Bias Current	V _{CM} = 1.2V			6		pА
los	Input Offset Current				4		pА
R _{IN}	Input Resistance				> 100		GΩ
CIN	Input Capacitance	Differential Common Mode			2 4		pF
CMRR	Common Mode Rejection Ratio	$V_{CM} = V_{SS}$ to V_{DD}			70		dB
V _{CM}	Common-mode Input Voltage Range			Vss-0.1		V _{DD} +0.1	V
PSRR	Power Supply Rejection Ratio				75		dB
Vон	High-Level Output Voltage	Ιουτ=-1mA	•	V _{DD} -0.3			V
V _{OL}	Low-Level Output Voltage	I _{OUT} =1mA	•			V _{SS} +0.3	V
lsc	Output Short-Circuit Current	Sink or source current			25		mA
la	Quiescent Current per Comparator				46	58	μA
I _{Q(off)}	Supply Current in Shutdown Note 2					1.5	μA
VIL	SHDN Input Low Voltage Note 2	Disable	•			0.2V _{DD}	V
VIH	SHDN Input High Voltage Note 2	Enable	•	$0.8V_{\text{DD}}$			V
ton	Turn-On Time Note 2	SHDN Toggle from Vss to VDD			15		μs
toff	Turn-Off Time Note 2	SHDN Toggle from VDD to Vss			1		μs
t _{LPD}	Latch Propagation Delay Note 3				200		ns
t _R	Rising Time				5		ns
t⊧	Falling Time				5		ns
T _{PD+}	Propagation Delay (Low-to-High)	Overdrive=100mV, V _{IN-} =1.2V			89		ns
	Propagation Delay (Low-to-High)	V _{IN+} 0 to VCC, V _{IN-} =1.2V			300		ns
T _{PD-}	Propagation Delay (High-to-Low)	Overdrive=100mV, V _{IN-} =1.2V			93		ns
	Propagation Delay (High-to-Low)	V _{IN+} VCC to 0, V _{IN-} =1.2V			28		ns
TPDSKEW	Propagation Delay Skew	Overdrive=100mV, V _{IN-} =1.2V			-4		ns

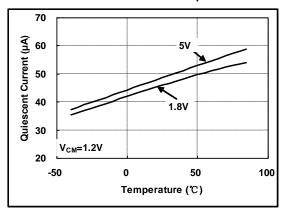

Note 1: The input offset voltage is the average of the input-referred trip points. The input hysteresis is the difference between the input-referred trip points.

Note 2: Specifications apply to the TP1941N with shutdown.

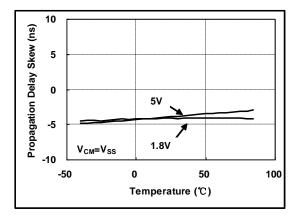

Note 3: Specifications apply to the TP1941NU with shutdown and latch enable.

Note 4: Propagation Delay Skew is defined as: tPD-SKEW = tPD+ - tPD-.

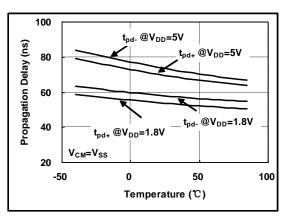
Typical Performance Characteristics

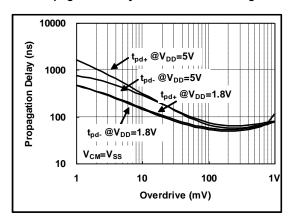


Input Offset Voltage V.S. Temperature

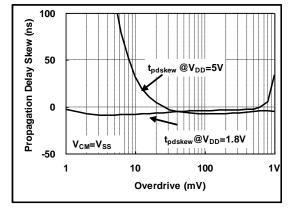


Input Hysteresis Voltage V.S. Temperature


Quiescent Current V.S. Temperature


Propagation Delay Skew V.S. Temperature

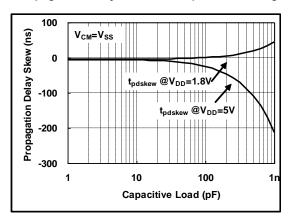
Propagation Delay V.S. Temperature



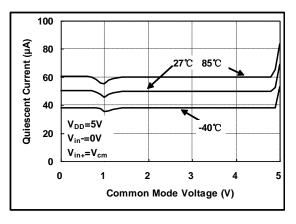
Propagation Delay V.S. Overdrive Voltage

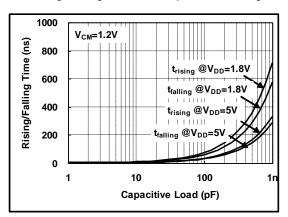

68ns, 1.8V, Ultra-low Power, RRI, Push-Pull Output Comparators

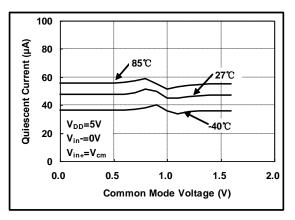
Typical Performance Characteristics

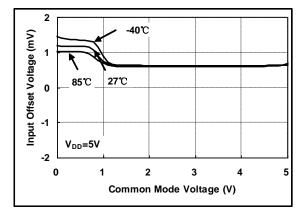


Propagation Delay Skew V.S. Overdrive Voltage

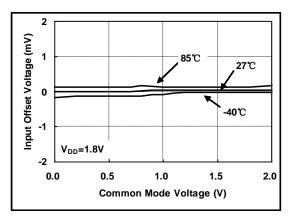

Propagation Delay V.S. Capacitor Loading


Propagation Delay Skew V.S. Capacitor Loading

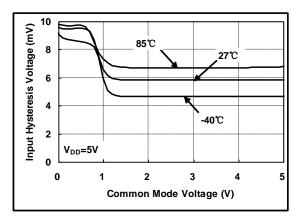

Quiescent Current V.S. Common Mode Voltage


Rising/Falling Time V.S. Capacitor Loading

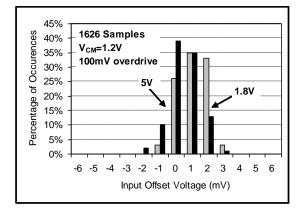
Quiescent Current V.S. Common Mode Voltage

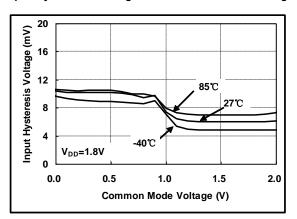


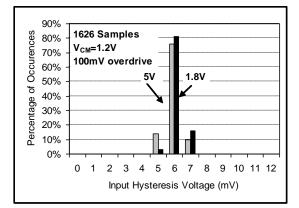
Typical Performance Characteristics



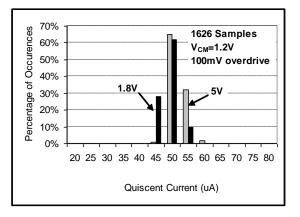
Input Offset Voltage V.S. Common Mode Voltage


Input Offset Voltage V.S. Common Mode Voltage

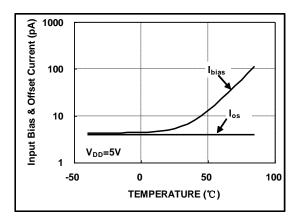

Input Hysteresis Voltage V.S. Common Mode Voltage


Input Offset Voltage Distribution

Input Hysteresis Voltage V.S. Common Mode Voltage

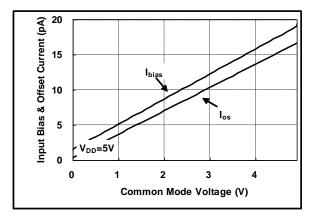


Input Hysteresis Voltage Distribution

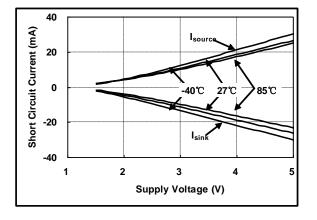


68ns, 1.8V, Ultra-low Power, RRI, Push-Pull Output Comparators

Typical Performance Characteristics

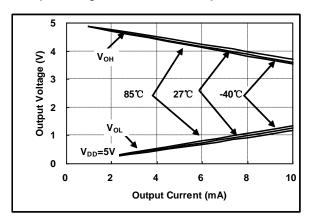


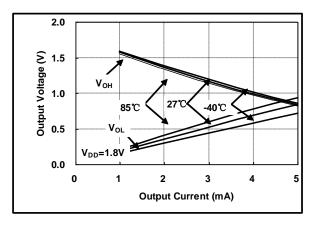
Quiescent Current Distribution



Input Bias and Offset Current V.S. Temperature

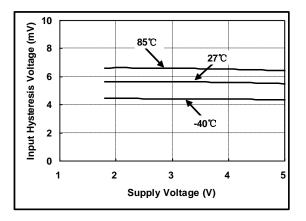
Input Bias Current V.S. Common Mode Voltage


Output Short Circuit Current V.S. Supply Voltage

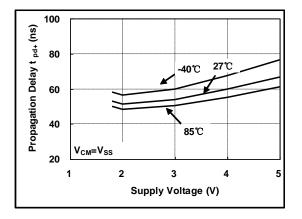

Output Short Circuit Current V.S. Temperature

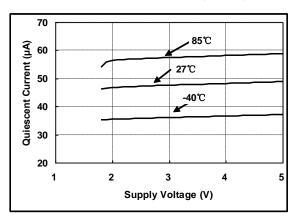
Output Voltage Headroom V.S. Output Current

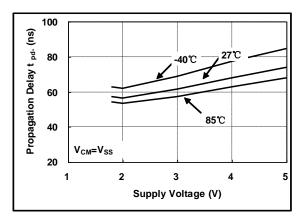
Typical Performance Characteristics

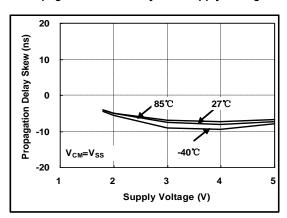


Output Voltage Headroom V.S. Output Current


Input Offset Voltage V.S. Supply Voltage


Input Hysteresis Voltage V.S. Supply Voltage


Low to High Propagation Delay V.S. Supply Voltage


Quiescent Current V.S. Supply Voltage

High to low Propagation Delay V.S. Supply Voltage

Typical Performance Characteristics

Propagation Skew Delay V.S. Supply Voltage

Pin Functions

–IN: Inverting Input of the Comparator. Voltage range of this pin can go from $V^- - 0.3V$ to $V^+ + 0.3V$.

+IN: Non-Inverting Input of Comparator. This pin has the same voltage range as –IN.

V+ (V_{DD}): Positive Power Supply. Typically the voltage is from 1.8V to 5.5V. Split supplies are possible as long as the voltage between V+ and V- is between 1.8V and 5.5V. A bypass capacitor of 0.1μ F as close to the part as possible should be used between power supply pins or between supply pins and ground.

N/C: No Connection.

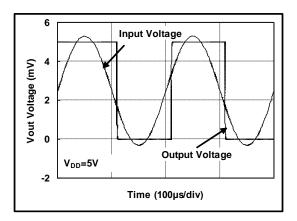
V⁻ (**V**_{ss}): Negative Power Supply. It is normally tied to ground. It can also be tied to a voltage other than ground as long as the voltage between V⁺ and V⁻ is from 1.8V to 5.5V. If it is not connected to ground, bypass it with a capacitor of 0.1μ F as close to the part as possible.

SHDN: Active **Low** Shutdown. Shutdown threshold is 1/2V+ above negative supply rail.

LATCH: Active **Low** Latch enable. Latch enable threshold is 1/2V+ above negative supply rail.

OUT: Comparator Output. The voltage range extends to within millivolts of each supply rail.

Operation


The TP194x family single-supply comparators feature internal hysteresis, high speed, and low power. Input signal range extends beyond the negative and positive power supplies. The output can even extend all the way to the negative supply. The input stage is active over different ranges of common mode input voltage. Rail-to-rail input voltage range and low-voltage singlesupply operation make these devices ideal for portable equipment.

68ns, 1.8V, Ultra-low Power, RRI, Push-Pull Output Comparators

Applications Information

Inputs

The TP194x comparator family uses CMOS transistors at the input which prevent phase inversion when the input pins exceed the supply voltages. Figure 1 shows an input voltage exceeding both supplies with no resulting phase inversion.

The electrostatic discharge (ESD) protection input structure of two back-to-back diodes and $1k\Omega$ series resistors are used to limit the differential input voltage applied to the precision input of the comparator by clamping input voltages that exceed supply voltages, as shown in Figure 2. Large differential voltages exceeding the supply voltage should be avoided to prevent damage to the input stage.

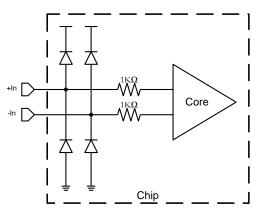


Figure 2. Equivalent Input Structure

Internal Hysteresis

Most high-speed comparators oscillate in the linear region because of noise or undesired parasitic feedback. This tends to occur when the voltage on one input is at or equal to the voltage on the other input. To counter the parasitic effects and noise, the TP194x implements internal hysteresis.

The hysteresis in a comparator creates two trip points: one for the rising input voltage and one for the falling input voltage. The difference between the trip points is the hysteresis. When the comparator's input voltages are equal, the hysteresis effectively causes one comparator input voltage to move quickly past the other, thus taking the input out of the region where oscillation occurs. Figure 3 illustrates the case where IN- is fixed and IN+ is varied. If the inputs were reversed, the figure would look the same, except the output would be inverted.

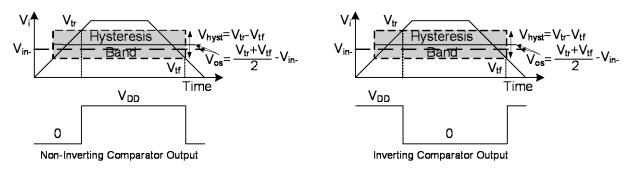


Figure 3. Comparator's hysteresis and offset

External Hysteresis

Greater flexibility in selecting hysteresis is achieved by using external resistors. Hysteresis reduces output chattering when one input is slowly moving past the other. It also helps in systems where it is best not to cycle between high and low states too frequently (e.g., air conditioner thermostatic control). Output chatter also increases the dynamic supply current.

Non-Inverting Comparator with Hysteresis

A non-inverting comparator with hysteresis requires a two-resistor network, as shown in Figure 4 and a voltage reference (V_r) at the inverting input.

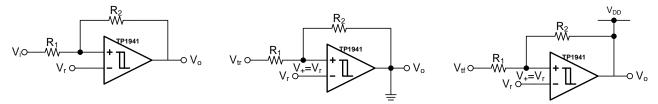


Figure 4. Non-Inverting Configuration with Hysteresis

When V_i is low, the output is also low. For the output to switch from low to high, V_i must rise up to V_{tr} . When V_i is high, the output is also high. In order for the comparator to switch back to a low state, V_i must equal V_{tf} before the non-inverting input V_+ is again equal to V_r .

$$V_{r} = \frac{R_{2}}{R_{1} + R_{2}} V_{tr}$$

$$V_{r} = (V_{DD} - V_{tf}) \frac{R_{1}}{R_{1} + R_{2}} + V_{tf}$$

$$V_{tr} = \frac{R_{1} + R_{2}}{R_{2}} V_{r}$$

$$V_{tf} = \frac{R_{1} + R_{2}}{R_{2}} V_{r} - \frac{R_{1}}{R_{2}} V_{DD}$$

68ns, 1.8V, Ultra-low Power, RRI, Push-Pull Output Comparators

$$V_{\text{hyst}} = V_{\text{tr}} - V_{\text{tf}} = \frac{R_1}{R_2} V_{\text{DD}}$$

Inverting Comparator with Hysteresis

The inverting comparator with hysteresis requires a three-resistor network that is referenced to the comparator supply voltage (V_{DD}), as shown in Figure 5.

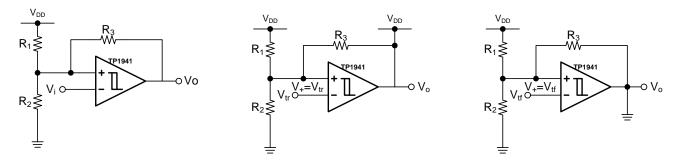


Figure 5. Inverting Configuration with Hysteresis

When V_i is greater than V_+ , the output voltage is low. In this case, the three network resistors can be presented as paralleled resistor $R_2 \parallel R_3$ in series with R_1 . When V_i at the inverting input is less than V_+ , the output voltage is high. The three network resistors can be represented as $R_1 \parallel R_3$ in series with R_2 .

$$V_{tr} = \frac{R_2}{R_1 \parallel R_3 + R_2} V_{DD}$$
$$V_{tf} = \frac{R_2 \parallel R_3}{R_2 \parallel R_3 + R_1} V_{DD}$$
$$V_{hyst} = V_{tr} - V_{tf} = \frac{R_1 \parallel R_2}{R_1 \parallel R_2 + R_3}$$

Low Input Bias Current

The TP194x family is a CMOS comparator family and features very low input bias current in pA range. The low input bias current allows the comparators to be used in applications with high resistance sources. Care must be taken to minimize PCB Surface Leakage. See below section on "PCB Surface Leakage" for more details.

VDD

PCB Surface Leakage

In applications where low input bias current is critical, Printed Circuit Board (PCB) surface leakage effects need to be considered. Surface leakage is caused by humidity, dust or other contamination on the board. Under low humidity conditions, a typical resistance between nearby traces is $10^{12}\Omega$. A 5V difference would cause 5pA of current to flow, which is greater than the TP194x's input bias current at +27°C (±6pA, typical). It is recommended to use multi-layer PCB layout and route the comparator's -IN and +IN signal under the PCB surface.

The effective way to reduce surface leakage is to use a guard ring around sensitive pins (or traces). The guard ring is biased at the same voltage as the sensitive pin. An example of this type of layout is shown in Figure 6 for Inverting configuration application.

- 1. For Non-Inverting Configuration:
 - a) Connect the non-inverting pin (V_{IN+}) to the input with a wire that does not touch the PCB surface.
 - b) Connect the guard ring to the inverting input pin (V_{IN}-). This biases the guard ring to the same reference as the comparator.
- 2. For Inverting Configuration:
 - a) Connect the guard ring to the non-inverting input pin (V_{IN}+). This biases the guard ring to the same reference voltage as the comparator (e.g., V_{DD}/2 or ground).
 - b) Connect the inverting pin (V_{IN} -) to the input with a wire that does not touch the PCB surface.

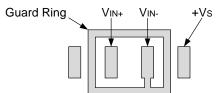


Figure 6. Example Guard Ring Layout for Inverting Comparator

Ground Sensing and Rail to Rail Output

The TP194x family implements a rail-to-rail topology that is capable of swinging to within 10mV of either rail. Since the inputs can go 300mV beyond either rail, the comparator can easily perform 'true ground' sensing.

The maximum output current is a function of total supply voltage. As the supply voltage of the comparator increases, the output current capability also increases. Attention must be paid to keep the junction temperature of the IC below 150°C when the output is in continuous short-circuit condition. The output of the amplifier has reversebiased ESD diodes connected to each supply. The output should not be forced more than 0.5V beyond either supply, otherwise current will flow through these diodes.

ESD

The TP194x family has reverse-biased ESD protection diodes on all inputs and output. Input and output pins can not be biased more than 300mV beyond either supply rail.

Shut-down

The TP1941N/TP1941NU has \overline{SHDN} pins that can shut down the amplifier to less than 1.5µA supply current. The \overline{SHDN} pin voltage needs to be within 0.2V+ of V– for the amplifier to shut down. During shutdown, the output will be in high output resistance state, which is suitable for multiplexer applications. It should be noted that \overline{SHDN} pin is forbidden to be left floating.

Latch-enable

The TP1941NU includes an internal latch that allows storage of comparison results. The LATCH pin has a high input impedance. If LATCH is high, the latch is transparent (i.e., the comparator operates as though the latch is not present). The comparator's output state is stored when LATCH is pulled low. All timing constraints must be met when using the latch function (Figure 7).

68ns, 1.8V, Ultra-low Power, RRI, Push-Pull Output Comparators

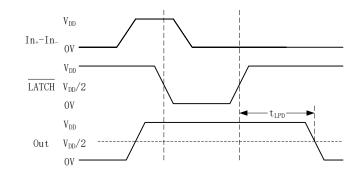


Figure 7. TP1941NU Timing Diagram with Latch Operator

Power Supply Layout and Bypass

The TP194x family's power supply pin should have a local bypass capacitor (i.e., 0.01μ F to 0.1μ F) within 2mm for good high frequency performance. It can also use a bulk capacitor (i.e., 1μ F or larger) within 100mm to provide large, slow currents. This bulk capacitor can be shared with other analog parts.

Good ground layout improves performance by decreasing the amount of stray capacitance and noise at the comparator's inputs and outputs. To decrease stray capacitance, minimize PCB lengths and resistor leads, and place external components as close to the comparator' pins as possible.

Proper Board Layout

The TP194x family is a series of fast-switching, high-speed comparator and requires high-speed layout considerations. For best results, the following layout guidelines should be followed:

1. Use a printed circuit board (PCB) with a good, unbroken low-inductance ground plane.

2. Place a decoupling capacitor (0.1µF ceramic, surface-mount capacitor) as close as possible to supply.

3. On the inputs and the output, keep lead lengths as short as possible to avoid unwanted parasitic feedback around the comparator. Keep inputs away from the output.

4. Solder the device directly to the PCB rather than using a socket.

5. For slow-moving input signals, take care to prevent parasitic feedback. A small capacitor (1000 pF or less) placed between the inputs can help eliminate oscillations in the transition region. This capacitor causes some degradation to propagation delay when the impedance is low. The topside ground plane should be placed between the output and inputs.

6. The ground pin ground trace should run under the device up to the bypass capacitor, thus shielding the inputs from the outputs.

Typical Applications

IR Receiver

The TP1941 is an ideal candidate to be used as an infrared receiver shown in Figure 8. The infrared photo diode creates a current relative to the amount of infrared light present. The current creates a voltage across R_D . When this voltage level cross the voltage applied by the voltage divider to the inverting input, the output transitions. Optional R_o provides additional hysteresis for noise immunity.

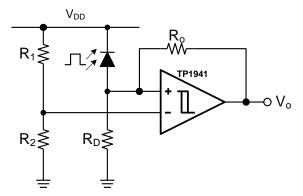


Figure 8. IR Receiver

Relaxation Oscillator

A relaxation oscillator using TP1941 is shown in Figure 9. Resistors R_1 and R_2 set the bias point at the comparator's inverting input. The period of oscillator is set by the time constant of R_4 and C_1 . The maximum frequency is limited by the large signal propagation delay of the comparator. TP1941's low propagation delay guarantees the high frequency oscillation.

If the inverted input (V_{C1}) is lower than the non-inverting input (V_A), the output is high which charges C_1 through R_4 until V_{C1} is equal to V_A . The value of V_A at this point is

$$\mathbf{V}_{A1} = \frac{\mathbf{V}_{DD} \bullet \mathbf{R}_2}{\mathbf{R}_1 \parallel \mathbf{R}_3 + \mathbf{R}_2}$$

At this point the comparator switches pulling down the output to the negative rail. The value of VA at this point is

$$\mathbf{V}_{A2} = \frac{\mathbf{V}_{DD} \bullet \mathbf{R}_2 \parallel \mathbf{R}_3}{\mathbf{R}_1 + \mathbf{R}_2 \parallel \mathbf{R}_3}$$

If $R_1=R_2=R_3$, then $V_{A1}=2V_{DD}/3$, and $V_{A2}=V_{DD}/3$

The capacitor C_1 now discharges through R_4 , and the voltage V_C decreases till it is equal to V_{A2} , at which point the comparator switches again, bringing it back to the initial stage. The time period is equal to twice the time it takes to discharge C_1 from $2V_{DD}/3$ to $V_{DD}/3$. Hence the frequency is:

$$Freq = \frac{1}{2 \bullet \ln 2 \bullet R_4 \bullet C_1}$$

68ns, 1.8V, Ultra-low Power, RRI, Push-Pull Output Comparators

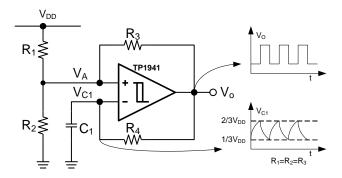


Figure 9. Relaxation Oscillator

Windowed Comparator

Figure 10 shows one approach to designing a windowed comparator using a single TP1942 chip. Choose different thresholds by changing the values of R1, R2, and R3. OutA provides an active-low undervoltage indication, and OutB gives an active-low overvoltage indication. ANDing the two outputs provides an active-high, power-good signal. When input voltage V_i reaches the overvoltage threshold V_{OH}, the OutB gets low. Once V_i falls to the undervoltage threshold V_{UH}, the OutA gets low. When V_{UH}<V_i<V_{OH}, the AND Gate gets high.

$$V_{OH} = V_r \bullet (R_1 + R_2 + R_3)/R_1$$

$$V_{UH} = V_r \bullet (R_1 + R_2 + R_3)/(R_1 + R_2)$$

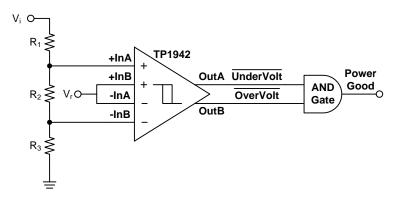
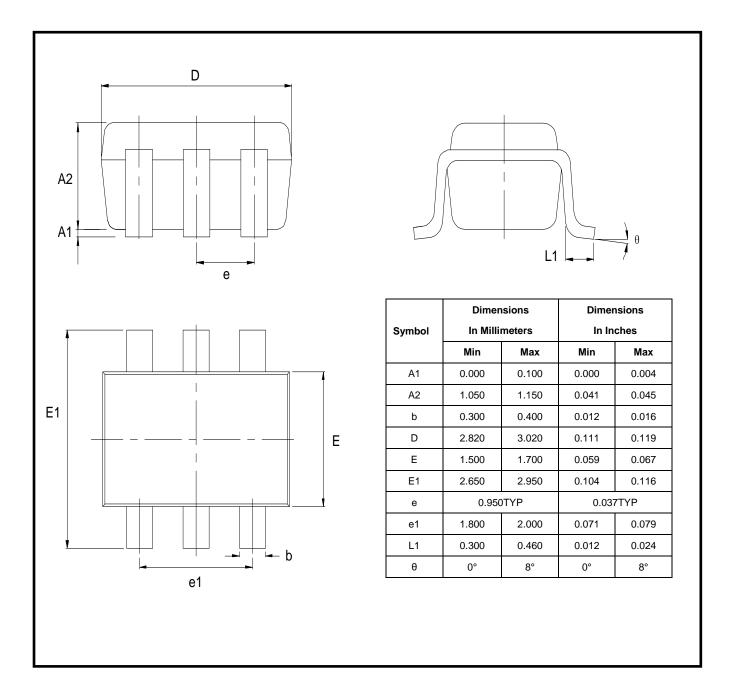
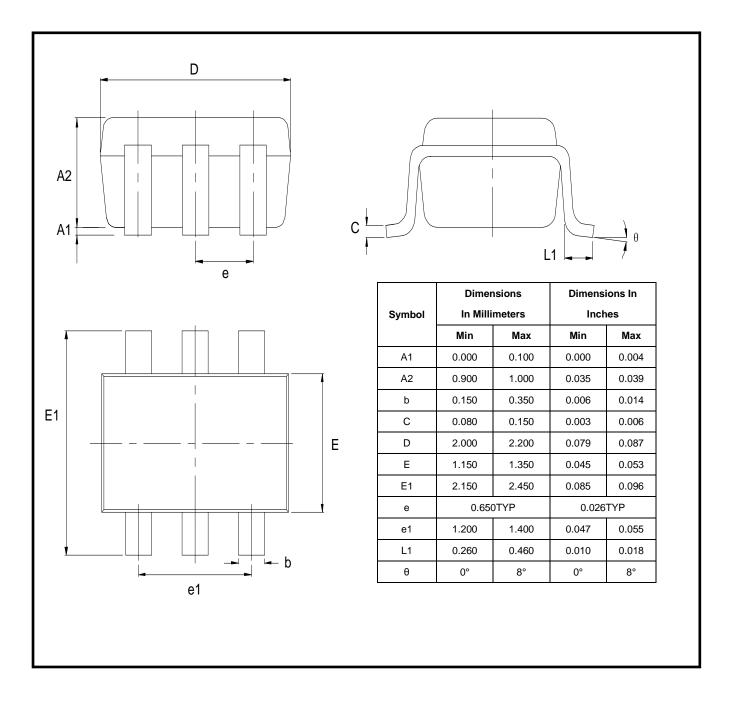
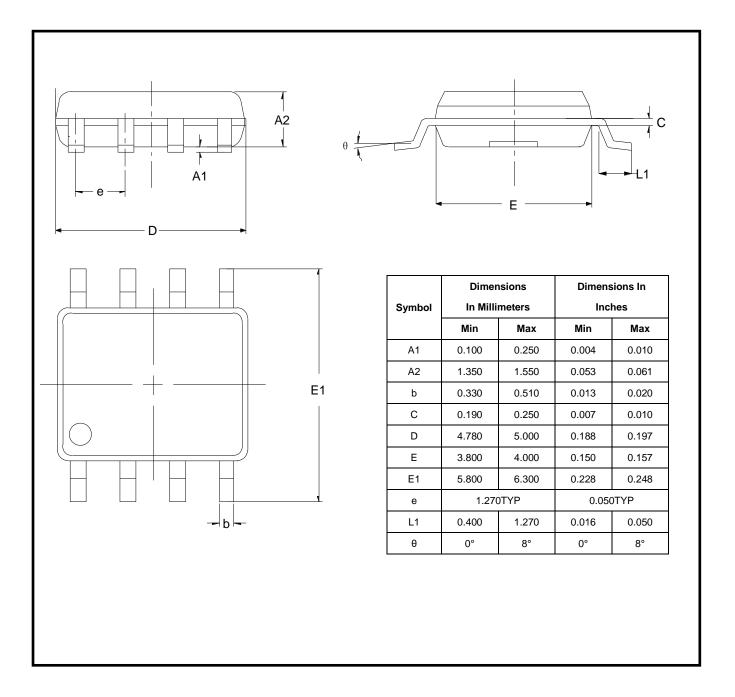



Figure 10. Windowed Comparator

Package Outline Dimensions

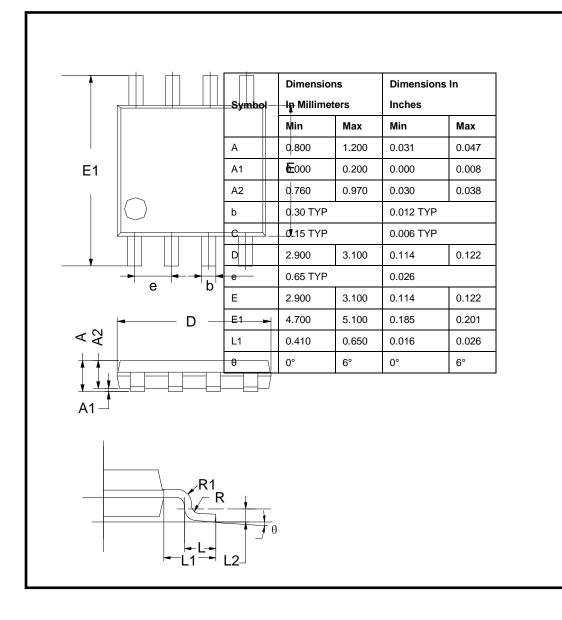

SOT23-5 / SOT23-6

68ns, 1.8V, Ultra-low Power, RRI, Push-Pull Output Comparators

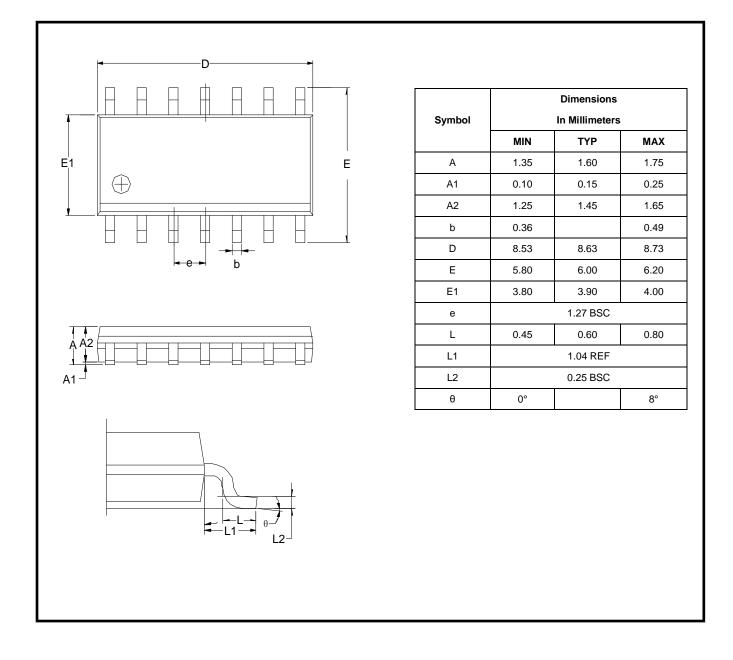

Package Outline Dimensions

SC-70-5 / SC-70-6 (SOT353 / SOT363)

Package Outline Dimensions

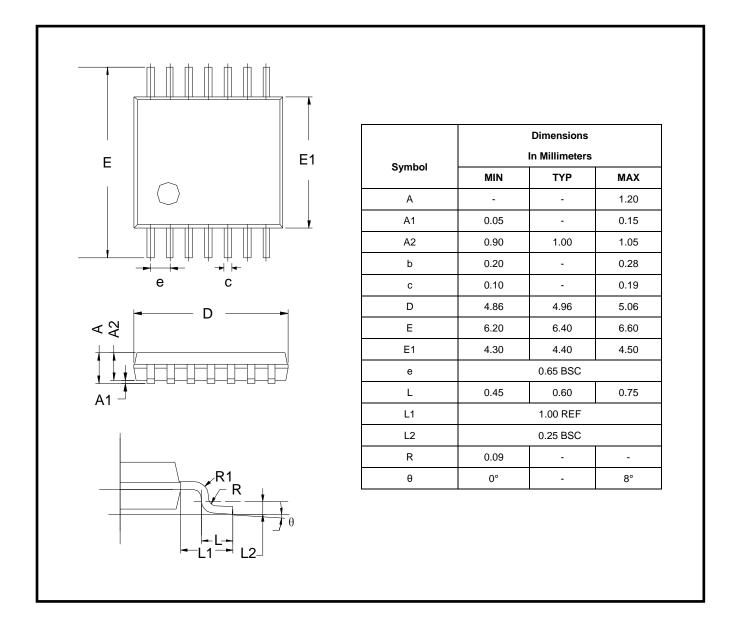

SO-8 (SOIC-8)

68ns, 1.8V, Ultra-low Power, RRI, Push-Pull Output Comparators


Package Outline Dimensions

MSOP-8

Package Outline Dimensions


SO-14 (SOIC-14)

68ns, 1.8V, Ultra-low Power, RRI, Push-Pull Output Comparators

Package Outline Dimensions

TSSOP-14

Revision History

Table 1.

Date	Revision	Notes
2022/4/29	1.6	Update order information