
Product Description

The QM12114 is a low loss, high isolation SP4T switch with performance optimized for GSM, CDMA, WCDMA, & LTE applications requiring high linearity and high power handling. The QM12114 is packaged in a compact 1.1mm x 1.1mm, 9-pin module which allows for a small solution size with no need for external DC blocking capacitors (when no external DC is applied to the device ports).

Functional Block Diagram

9 Pin 1.1 x 1.1 x 0.44 mm Package

Feature Overview

- Low Insertion Loss
- High Port-to-Port Isolation
- RFFE 2.0 compatible (52MHz Write Speed)
- Capable of 1.8V operation
- HBM Rating > 1kV on all ports
- Compact size: 1.1mm x 1.1mm x 0.44mm
- DC blocking capacitors are not required in typical applications

Applications

- Cellular Handset Applications
- Cellular Modems and USB Devices
- Multi-Mode GSM, EDGE, WCDMA, and LTE Applications

Ordering Information

PART NO.	DESCRIPTION
QM12114SB	5-pc Sample Bag
QM12114SR	100-pc, 7" Reel
QM12114TR13-5K	5000-pc, 13" Reel
QM12114DK	Fully Assembled Evaluation Kit

Absolute Maximum Ratings

PARAMETER	RATING
Storage Temperature	-65 to +150 °C
Operating Temperature	-30 to +90°C
V _{IO}	2.5 V
SDATA, SCLK	2.5 V
Maximum Power Handling	39 dBm, 1:1 VSWR, +25°C, 25% duty cycle

Operation of this device outside the parameter ranges given above may cause permanent damage.

Recommended Operating Conditions

PARAMETER	MIN.	TYP.	MAX.	UNITS
V _{IO} Supply Voltage	1.65	1.8	1.95	V
V _{IO} Supply Current (Active Mode)		30		μΑ
V _{IO} Supply Current (Low Power Mode)		3		μΑ
SDATA, SCLK Logic Low (Input)	0.00	0.00	0.3 x VIO	V
SDATA, SCLK Logic High (Input)	0.7 x VIO	1.8	VIO	V
SDATA Logic Low (Output)	0.00	0.00	0.2 x VIO	V
SDATA Logic High (Output)	0.8 x VIO	1.8	VIO	V
SDATA, SCLK Logic High Current		0.1	5	μΑ
Turn-On Time			20	μs
Switching Speed (50% of rising edge of last SCLK to 90% RF)		2	2.7	μs

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

Electrical Specifications

Test conditions unless otherwise stated: all unused RF ports terminated in 50Ω , Input and Output = 50Ω , T = 25° C, V_{IO} = 1.8V, SDATA/SCLK = 1.8 V / 0 V

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Frequency Range		698		6000	MHz
Insertion Loss					
RF1/2/3/4 to RFCOM	698 MHz to 960 MHz		0.23		dB
RF1/2/3/4 to RFCOM	1700 MHz to 2200 MHz		0.32		dB
RF1/2/3/4 to RFCOM	2300 MHz to 2700 MHz		0.35		dB
RF1/2/3/4 to RFCOM*	3300 MHz to 4200 MHz		0.44		dB
RF1/2/3/4 to RFCOM*	4400 MHz to 5000 MHz		0.60		dB
RF1/2/3/4 to RFCOM*	5000 MHz to 6000 MHz		0.60		dB
					1
Isolation					
Port to Port	Refer to Isolation Matrix				
Port to RFCOM	Refer to Isolation Matrix				
Harmonics					
3Fo (B17)	fo = 704MHz; P _{in} = 25dBm; CW		-88		dBm
2Fo (B13)	fo = 786.5MHz; P _{in} = 25dBm; CW		-90		dBm
2Fo (B8)	fo = 897.5MHz; P _{in} = 25dBm; CW		-99		dBm
2Fo (GSM 850/900)	fo = 824 – 915MHz; Pin = 35dBm; CW		-69		dBm
3Fo (GSM 850/900)	fo = 824 – 915MHz; Pin = 35dBm; CW		-56		dBm
≥ 4Fo - 12.75GHz (GSM 850/900)	fo = 824 – 915MHz; Pin = 35dBm; CW		-94		dBm
2Fo (GSM DCS/PCS)	fo = 1710 – 1980MHz; Pin = 32dBm; CW		-72		dBm
3Fo (GSM DCS/PCS)	fo = 1710 – 1980MHz; Pin = 32dBm; CW		-62		dBm
≥ 4Fo - 12.75GHz (GSM DCS/PCS)	fo = 1710 – 1980MHz; Pin = 32dBm; CW		-102		dBm
= c	10 11 10 1000111 12, 1 111 0202111, 011				
IMD2	Ftx = 20dBm; Fint = -15dBm				
	Ftx = 880 MHz, Fint = 1805 MHz,		-123		
Band VIII	Fmeas = 925 MHz, Measure on all Pins				dBm
	Ftx = 1880 MHz, Fint = 3840 MHz,		-121		
Band II	Fmeas = 1960 MHz, Measure on all Pins				dBm
Dand VIII	Ftx = 2535 MHz, Fint = 5190 MHz,		-123		al Date
Band VII	Fmeas = 2655 MHz, Measure on all Pins				dBm
IMD3	Ftx = 20dBm; Fint = -15dBm				
Band VIII	Ftx = 897.5 MHz, Fint = 852.5 MHz,		-124		dBm
Danu VIII	Fmeas = 942.5 MHz, Measure on all Pins				UDIII
Band II	Ftx = 1880 MHz, Fint = 1800 MHz,		-126		dBm
Dana II	Fmeas = 1960 MHz, Measure on all Pins				
Band VII	Ftx = 2535 MHz, Fint = 2415 MHz,		-125		dBm
Dana VII	Fmeas = 2655 MHz, Measure on all Pins				

^{*} See tuning schematic for 5000MHz to 6000MHz insertion loss

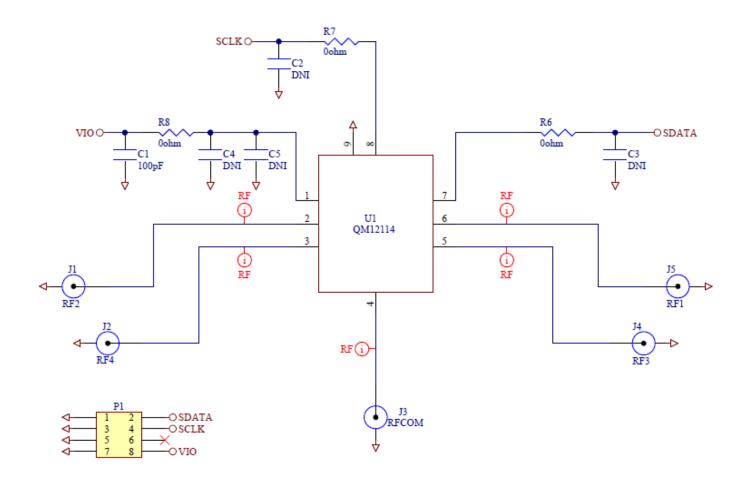
PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNITS
VSWR					
RF1, RF2, RF3, RF4, RFCOM	698 MHz to 960 MHz		1.19		:1
RF1, RF2, RF3, RF4, RFCOM	1700 MHz to 2700 MHz		1.31		:1
RF1, RF2, RF3, RF4, RFCOM	3200 MHz to 3800 MHz		1.43		:1
RF1, RF2, RF3, RF4, RFCOM*	5000 MHz to 6000 MHz		1.60		:1

^{*} See tuning schematic for 5000MHz to 6000MHz insertion loss

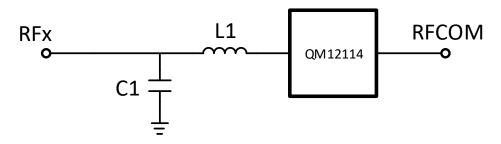
Isolation Matrix

Test conditions unless otherwise stated: all unused RF ports terminated in 50Ω , Input and Output = 50Ω , T = 25° C, V_{IO} = 1.8V, SDATA/SCLK = 1.8 V / 0 V

SW STATE	INSERTION		ISOLATION 698 - 96	OMHZ, TYPICAL (DB)	
OWOTATE	PORT	RF1	RF2	RF3	RF4
RF1	RF1		53	44	47
RF2	RF2	53		47	45
RF3	RF3	39	52		53
RF4	RF4	52	39	53	
RF1	RFCOM		46	40	40
RF2	RFCOM	47		40	40
RF3	RFCOM	47	46		40
RF4	RFCOM	47	46	40	

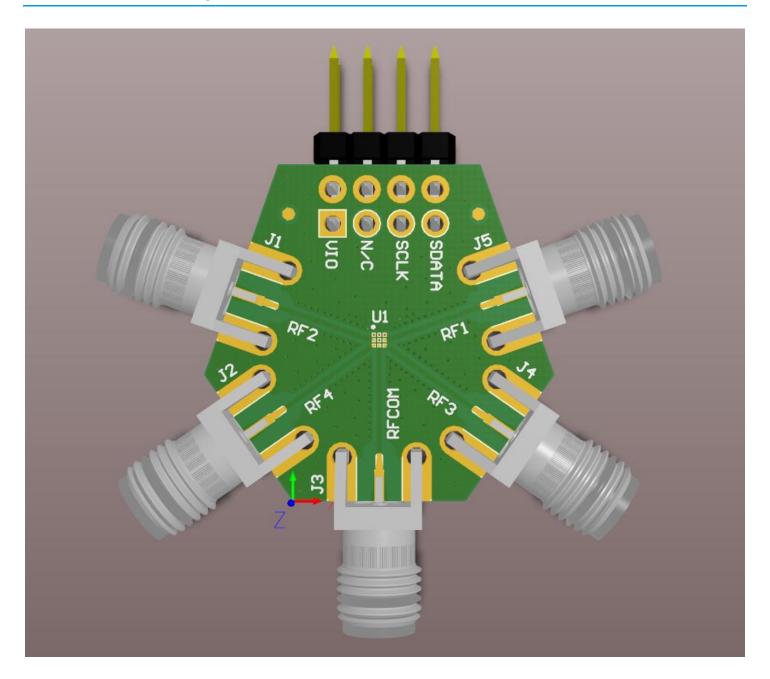

SW STATE INSERTION		ISOLATION 1710 – 2170MHZ, TYPICAL (DB)				
SW SIAIE	PORT	RF1	RF2	RF3	RF4	
RF1	RF1		39	33	37	
RF2	RF2	39		37	33	
RF3	RF3	31	40		38	
RF4	RF4	39	31	38		
RF1	RFCOM		36	31	31	
RF2	RFCOM	36		31	31	
RF3	RFCOM	36	36		31	
RF4	RFCOM	36	36	30		

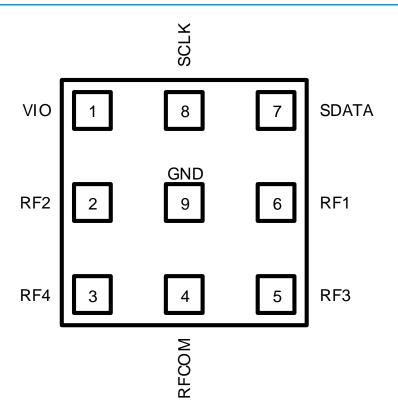
CW STATE	SW STATE INSERTION		ISOLATION 2300 – 2700MHZ, TYPICAL (DB)				
SW STATE	PORT	RF1	RF2	RF3	RF4		
RF1	RF1		36	30	34		
RF2	RF2	35		33	30		
RF3	RF3	28	36		34		
RF4	RF4	35	28	34			
RF1	RFCOM		33	27	27		
RF2	RFCOM	33		27	27		
RF3	RFCOM	33	33		27		
RF4	RFCOM	33	33	27			


SW STATE INSERTION		ISOLATION 3400 – 3800MHZ, TYPICAL (DB)				
SWSIAIE	PORT	RF1	RF2	RF3	RF4	
RF1	RF1		29	23	27	
RF2	RF2	29		28	23	
RF3	RF3	23	29		27	
RF4	RF4	29	23	27		
RF1	RFCOM		28	23	23	
RF2	RFCOM	27		23	23	
RF3	RFCOM	27	28		23	
RF4	RFCOM	27	28	23		

SW STATE INSERTION		ISOLATION 5000 - 6000MHZ, TYPICAL (DB)				
SWSIAIE	PORT	RF1	RF2	RF3	RF4	
RF1	RF1		22	16	23	
RF2	RF2	22		22	17	
RF3	RF3	17	22		20	
RF4	RF4	22	18	20		
RF1	RFCOM		22	17	17	
RF2	RFCOM	22		17	17	
RF3	RFCOM	22	22		17	
RF4	RFCOM	22	22	17		

Application Circuit Schematic


Tuning Schematic for 5000MHz – 6000MHz


NAME	VALUE	PACKAGE	DESCRIPTION
C1	0.5pF	0201	Matching for optimized RF performance*
L1	1.5nH	0201	Matching for optimized RF performance*

^{*} Matching elements are subject to change based on specific system application

Evaluation Board Layout

Pin Configuration and Description

Top View

PIN NO.	LABEL	DESCRIPTION
1	VIO	Voltage Supply
2	RF2	RF port
3	RF4	RF port
4	RFCOM	RF common port
5	RF3	RF port
6	RF1	RF port
7	SDATA	RFFE Data Signal
8	SCLK	RFFE Clock Signal
9	GND	Ground

RFFE Register Map

${\bf Register~0x0000-SW_CTRL0}$

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
7:4	SPARE	Reserved for future use	0x0	No	0 - 2	R/W
		0x00: Isolation				
		0x01: RF1 - RFC				
3:0	SW_CTRL	0x02: RF2 - RFC	0x00	No	0-2	R/W
		0x04: RF3 - RFC				
		0x08: RF4 - RFC				

Register 0x0001 — SPARE

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
7:0	SPARE	Reserved for future use	0x00	No	0 - 2	R/W

Register 0x001A — RFFE_STATUS

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
		Setting this bit initiates a software reset				
7	UDR_RST	Note: On software reset, this register and all User Defined registers (UDRs) are reset. This bit will always read as 0.	0	No	No	W
6	CMD_FR_P_ERR	Command Frame received with a parity error	0	No	No	R/W
5	CMD_LEN_ERR	Command Sequence received with an incorrect length	0	No	No	R/W
4	ADDR_FR_P_ERR	Address Frame received with a parity error	0	No	No	R/W
3	DATA_FR_P_ERR	Data Frame received with a parity error	0	No	No	R/W
2	RD_INVLD_ADDR	Read Command Sequence received with an invalid address	0	No	No	R/W
1	WR_INVLD_ADDR	Write Command Sequence received with an invalid address	0	No	No	R/W
0	BID_GID_ERR	Read Command Sequence received with a BSID or GSID	0	No	No	R/W
		Note: Reading this register resets this register.				

Register 0x001B — GSID

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
7:4	GSID0[3:0]	Group Slave ID0	0x0	No	No	R/W
3:0	GSID1[3:0]	Group Slave ID1	0x0	No	No	R/W

$\textbf{Register 0x001C} - \textbf{PM_TRIG}$

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
7:6	PWR_MODE[1:0]	00: ACTIVE - Normal Operation 01: STARTUP - Reset all registers to default settings 10: ACTIVE - Low Power - Antenna in isolation 11: STARTUP - Reset all registers to default settings Note: Setting PWR_MODE to STARTUP is identical to a hardware reset initiated by the VIO signal.	0b10	B/G	No	R/W
		Setting bit TriggerMask[N] disables Trigger[N] TriggerMask[N] updates before Trigger[N] is processed				
5:3	TriggerMask[2:0]	Note: When Trigger[N] is disabled, writing to a register associated with Trigger[N] sends data directly to that register. If a register is associated with multiple triggers, then all associated triggers must be disabled to allow direct writes to the associated register.	0b000	No	No	R/W
		Setting bit Trigger[N] loads Trigger[N]'s associated registers				
2:0	Trigger[2:0]	Note: When Trigger[N] is enabled, writing to a register associated with Trigger[N] sends data to that register's shadow. Setting the Trigger[N] bit loads data from shadow. All triggers are processed immediately and simultaneously and then cleared. Trigger[0], [1], and [2] will always read as 0.	0b000	B/G	No	W

${\bf Register~0x001D-PRODUCT_ID}$

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
		Lower eight bits of Product Number				
7:0	PROD_ID[7:0]	Note: These are read-only registers. However, as part of the special programming sequence for writing USID, a write command sequence is performed on one or both registers, but does not update them. See MIPI 6.6.2 for details.	0x17	No	No	R

$\textbf{Register 0x001E} - \textbf{MANUFACTURER_ID}$

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
7:0	MFG_ID[7:0]	Lower eight bits of MIPI Manufacturer ID Note: These are read-only registers. However, as part of the special programming sequence for writing USID, a write command sequence is performed on one or both registers, but does not update them. See MIPI 6.6.2 for details.	0x34	No	No	R

$\textbf{Register 0x001F} - \textbf{MAN_USID}$

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
7:6	RESERVED	Reserved for future use	0b00	No	No	R
		Upper two bits of MIPI Manufacturer ID				
5:4	MFG_ID[9:8]	Note: This is a read-only register. However, as part of the special programming sequence for writing USID, a write command sequence is performed on this register, but does not update it. See MIPI 6.6.2 for details.	0b01	No	No	R
		Programmable Unique Slave ID				
3:0	USID[3:0]	Note: USID is only writeable using a special programming sequence. See MIPI 6.6.2 for details.	0x8	No	No	R/W

${\bf Register~0x0021-REVISION_ID}$

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
7:6	MAJOR_REV[1:0]	Major Revisions - all layer	0b00	No	No	R
5:4	MINOR_REV[1:0]	Minor Revisions - metal only	0b00	No	No	R
3:0	MISC_REV[3:0]	Misc Revisions - mask variants	0b0001	No	No	R
		Note: The REVISION_ID register contains this product's revision number which is set by Qorvo according to manufacture date. The value may change throughout the product life cycle.				

Power On and Off Sequence

It is very important that the user adheres to the correct timing sequences in order to avoid damaging the device. Figures are NOT drawn to scale.

1. Once VIO is powered down to 0V, wait a minimum of 10 μ s to reapply power to VIO. (see figure 1)

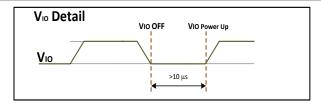


Figure 1 Digital Supply Detail

- 2. VIO must be applied for a minimum of 120 ns before sending SDATA/SCLK to ensure correct data transmission. (see figure 2)
- 3. VIO must be applied for a minimum of 15 μs before applying RF power. (see figure 2)
- Wait a minimum of 2.7μs after RFFE bus is idle to apply an RF signal. (see figure 2)

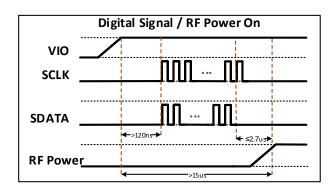


Figure 2 Digtial Signal / RF Power-On Detail

5. RF power must not be applied during switching events. To ensure this, remove RF power before completing a register write that will change the switch mode. (see figure 3)

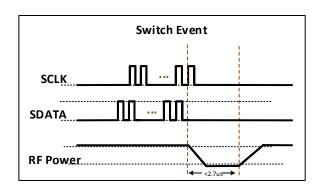
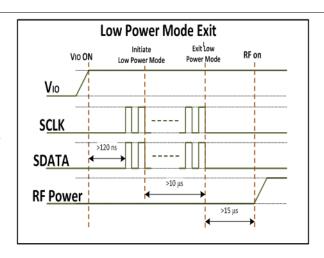



Figure 3 Switch Event Timing

6. If "Low Power Mode" is utilized, there must be a delay of 10 μs before exiting "Low Power Mode". (see figure 4)

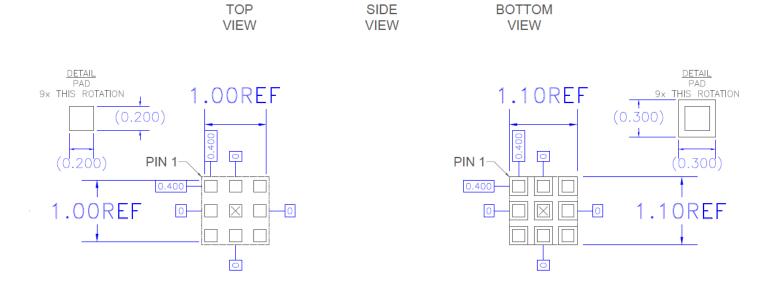
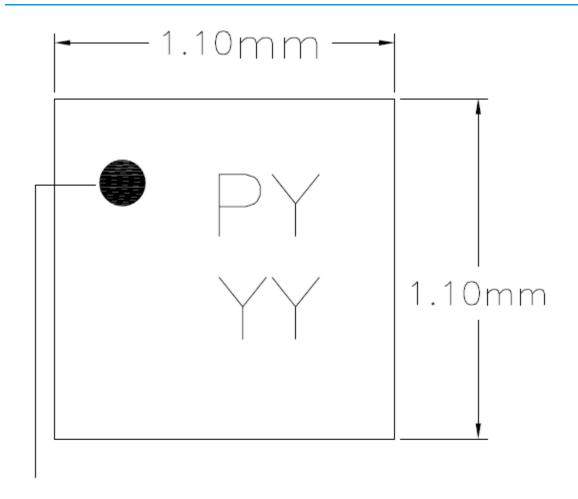


Figure 4 Low Power Mode Exit Timing

Mechanical Information

Package Drawing

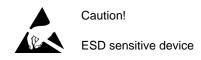

RECOMMENDED LAND PATTERN

RECOMMENDED LAND PATTERN MASK

Notes:

- 1. All dimensions are in milimeters. Angles are in degrees.
- 2. Dimension and tolerance formats conform to ASME Y14.4M-1994.
- 3. The terminal #1 identifier and terminal numbering conform to JESD 95-1 SPP-012.

Branding Diagram


Pin 1 Indicator Trace Code to be assigned by SubCon

Where:

P is Product Code YYY is Trace Code

Handling Precautions

PARAMETER	RATING	STANDARD
ESD – Human Body Model (HBM)	Class 1C	ANSI/ESD/JEDEC JS-001
ESD – Charged Device Model (CDM)	Class C3	ANSI/ESDA/JEDEC JS-002
MSL – Moisture Sensitivity Level	Level 3	IPC/JEDEC J-STD-020

Solderability

Compatible with both lead-free (260 °C max. reflow temperature) and tin/lead (245 °C max. reflow temperature) soldering processes.

Package lead plating: Electrolytic plated Au over Ni

RoHS Compliance

This part is compliant with the 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄O₂) Free
- SVHC Free

Revision History

Revision Code	Comments
Rev A	Initial Production Release
Rev B	Update MSL Rating
Rev C	Added 6GHz data and tuning schematic, updated Mechanical Info drawings
Rev J	Corrected Package Drawing Dimension
Rev K	Update RFFE 2.0 compatible information
Rev L	Updated B13 2Fo Data
Rev M	Updated Switching Speed
Rev N	Updated Switching Speed wording, timing diagram, power handling
Rev O	Updated power handling
Rev P	Updated Branding Diagram