
SLOS003G - JUNE 1983 - REVISED MARCH 2001

- A-Suffix Versions Offer 5-mV V_{IO}
- B-Suffix Versions Offer 2-mV V_{IO}
- Wide Range of Supply Voltages
 1.4 V to 16 V
- True Single-Supply Operation
- Common-Mode Input Voltage Includes the Negative Rail
- Low Noise . . . 25 nV/√Hz Typ at f = 1 kHz (High-Bias Version)

description

The TLC254, TLC254A, TLC254B, TLC25L4, TLC254L4A, TLC254L4B, TLC25M4, TLC25M4A and TL25M4B are low-cost, low-power quad operational amplifiers designed to operate with single or dual supplies. These devices utilize the Texas Instruments silicon gate LinCMOS™

symbol (each amplifier)

process, giving them stable input-offset voltages that are available in selected grades of 2, 5, or 10 mV maximum, very high input impedances, and extremely low input offset and bias currents. Because the input common-mode range extends to the negative rail and the power consumption is extremely low, this series is ideally suited for battery-powered or energy-conserving applications. The series offers operation down to a 1.4-V supply, is stable at unity gain, and has excellent noise characteristics.

These devices have internal electrostatic-discharge (ESD) protection circuits that prevent catastrophic failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.1. However, care should be exercised in handling these devices as exposure to ESD may result in degradation of the device parametric performance.

Because of the extremely high input impedance and low input bias and offset currents, applications for these devices include many areas that have previously been limited to BIFET and NFET product types. Any circuit using high-impedance elements and requiring small offset errors is a good candidate for cost-effective use of these devices. Many features associated with bipolar technology are available with LinCMOS operational amplifiers without the power penalties of traditional bipolar devices.

Available options

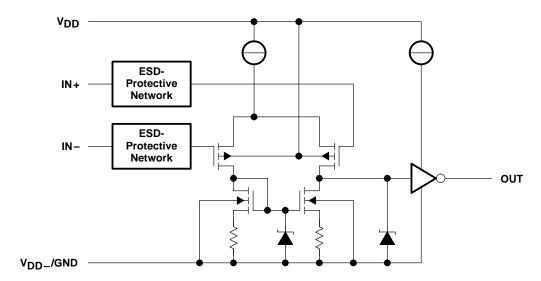
	Viemay	PAC	KAGED DEVICES		CHIP FORM
TA	V _{IO} max AT 25°C	SMALL OUTLINE PLASTIC DIP (D) (N)		TSSOP (PW)	(Y)
	10 mV	TLC254CD	TLC254CN	TLC254CPW	TLC254Y
	5 mV	TLC254ACD	TLC254ACN	—	—
	2 mV	TLC254BCD	TLC254BCN	—	—
0°C to 70°C	10 mV	TLC25L4CD	TLC25L4CN	TLC25L4CPW	TLC25L4Y
	5 mV	TLC25L4ACD	TLC25L4ACN	—	—
	2 mV	TLC25L2BCD	TLC25L4BCN	—	—
	10 mV	TLC25M4CD	TLC25M4CN	TLC25M4CPW	TLC25M4Y
	5 mV	TLC25M4ACD	TLC25M4ACN	—	—
	2 mV	TLC25M4BCD	TLC25M4BCN	—	—

The D package is available taped and reeled. Add the suffix R to the device type (e.g., TLC254CDR). Chips are tested at 25°C.

SLOS003G - JUNE 1983 - REVISED MARCH 2001

description (continued)

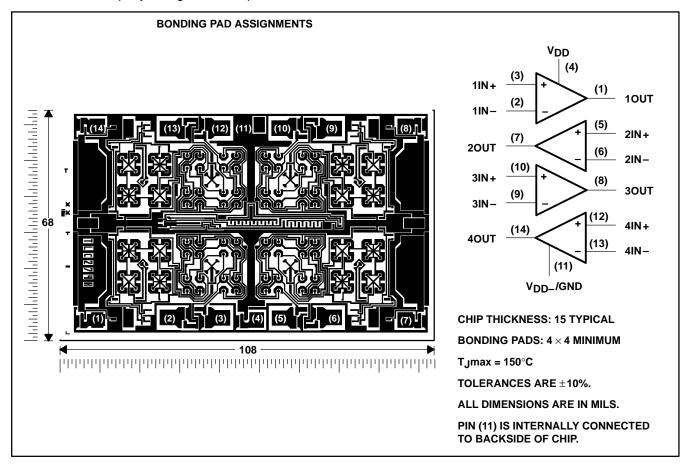
General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are all easily designed with these devices. Remote and inaccessible equipment applications are possible using their low-voltage and low-power capabilities. These devices are well suited to solve the difficult problems associated with single-battery and solar-cell-powered applications. This series includes devices that are characterized for the commercial temperature range and are available in 14-pin plastic dip and the small-outline packages. The device is also available in chip form.


These devices are characterized for operation from 0°C to 70°C.

DEVICE FEATURES

PARAMETER	TLC25L4_C (LOW BIAS)	TLC25M4_C (MEDIUM BIAS)	TLC254_C (HIGH BIAS)
Supply current (Typ)	40 μΑ	600 μΑ	4000 μΑ
Slew rate (Typ)	0.04 V/μA	0.6 V/μA	4.5 V/μA
Input offset voltage (Max) TLC254C, TLC25L4C, TLC25M4C TLC254AC, TLC25L4AC, TLC25M4AC TLC254BC, TLC25L4BC, TLC25M4BC	10 mV 5 mV 2 mV	10 mV 5 mV 2 mV	10 mV 5 mV 2 mV
Offset voltage drift (Typ)	0.1 μV/month [†]	0.1 μV/month [†]	0.1 μV/month [†]
Offset voltage temperature coefficient (Typ)	0.7 μV/°C	2 μV/°C	5 μV/°C
Input bias current (Typ)	1 pA	1 pA	1 pA
Input offset current (Typ)	1 pA	1 pA	1 pA

[†] The long-term drift value applies after the first month.


equivalent schematic (each amplifier)

SLOS003G - JUNE 1983 - REVISED MARCH 2001

chip information

These chips, when properly assembled, display characteristics similar to the TLC25_4C. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform.

SLOS003G - JUNE 1983 - REVISED MARCH 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{DD} (see Note 1)	
Differential input voltage (see Note 2)	±18 V
Input voltage range (any input)	0.3 V to 18 V
Duration of short-circuit at (or below) 25°C free-air temperature (see Note 3)	unlimited
Continuous total dissipation	. See Dissipation Rating Table
Operating free-air temperature range	0°C to 70°C
Storage temperature range	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential voltages, are with respect to V_{DD}_/GND.
 - 2. Differential voltages are at IN+, with respect to IN-.
 - 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure the maximum dissipation rating is not exceeded.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW
N	1050 mW	9.2 mW/°C	736 mW
PW	700 mW	5.6 mW/°C	448 mW

recommended operating conditions

		MIN	MAX	UNIT
Supply voltage, V _{DD}		1.4	16	V
	V _{DD} = 1.4 V	0	0.2	
Common mode input voltage V/o	V _{DD} = 5 V	-0.2	4	V
Common-mode input voltage, V _{IC}	V _{DD} = 10 V	-0.2	9	V
	V _{DD} = 16 V	-0.2	14	
Operating free-air temperature, TA		0	70	°C

electrical characteristics at specified free-air temperature, $V_{DD} = 1.4 \text{ V}$ (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	_ '	TI	LC254_C	;]	TL	.C25L4_0		TL	C25M4_	_C	UNIT
	PARAMETER		TEST CONDITIONS†	TA	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNII
		TI C25 4C		25°C			10			10			10	
		TLC25_4C	1	0°C to 70°C			12			12			12	1
,,	lanut offeet voltage	TI C25 4AC	V2 = 0.2 V P2 = 50.0	25°C			5			5			5] _{mV}
VIO	Input offset voltage	TLC25_4AC	$V_0 = 0.2 \text{ V}, R_S = 50 \Omega$	0°C to 70°C			6.5			6.5			6.5	IIIV
		TI C25 4BC]	25°C			2			2			2	1
		TLC25_4BC		0°C to 70°C			3			3			3	
a _{VIO}	Average temperature of input offset voltage	coefficient of		25°C to 70°C		1			1			1		μV/°C
1	land offent ourrent		V- 00V	25°C		1	60		1	60		1	60	
IO	Input offset current		V _O = 0.2 V	0°C to 70°C			300			300			300	pА
1.5	lanut biog current		V2 = 0.2 V	25°C		1	60		1	60		1	60	
ΙΒ	Input bias current		V _O = 0.2 V	0°C to 70°C			600			600			600	pΑ
VICR	Common-mode input v	voltage range		25°C	0 to 0.2			0 to 0.2			0 to 0.2			V
VOM	Peak output voltage sv	wing‡	V _{ID} = 100 mV	25°C	450	700		450	700		450	700		mV
A _{VD}	Large-signal differentia amplification	al voltage	$V_{O} = 100 \text{ to } 300 \text{ mV},$ $R_{S} = 50 \Omega$	25°C		10			20			20		V/mV
CMRR	Common-mode rejecti	ion ratio	$V_O = 0.2 \text{ V},$ $V_{IC} = V_{ICR} \text{min}$	25°C	60	77		60	77		60	77		dB
I_{DD}	Supply current		$V_O = 0.2 \text{ V}$, No load	25°C		600	750		50	68		400	500	μΑ

[†] All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Unless otherwise noted, an output load resistor is connected from the output to ground and has the following value: for low bias, $R_L = 1 \text{ M}\Omega$, for medium bias $R_L = 100 \text{ k}\Omega$, and for high bias $R_L = 10 \text{ k}\Omega$.

operating characteristics, V_{DD} = 1.4 V, T_A = 25°C

			TLC254_C			TL	.C25L4	С	TL	С		
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
SR	Slew rate at unity gain	See Figure 1		0.1			0.001			0.01		V/µs
B ₁	Unity-gain bandwidth	$A_V = 40 \text{ dB},$ $C_L = 10 \text{ pF},$ $R_S = 50 \Omega,$ See Figure 1		12			12			12		kHz
	Overshoot factor	See Figure 1		30%			35%			35%		

[‡] The output swings to the potential of V_{DD}_/GND.

TLC254A, TLC254B, TLC254Y, TLC25L4, TLC25L4A, TLC25L4B TLC25L4Y, TLC25M4, TLC25M4A, TLC25M4B, TLC25M4Y LinCMOSTM QUAD OPERATIONAL AMPLIFIERS SLOS003G – JUNE 1983 – REVISED MARCH 2001

electrical characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$ (unless otherwise noted)

	PARAMETER		TEST CONI	DITIONS	T _A †		4, TLC2! .C254B(UNIT
					'`	MIN	TYP	MAX	
		TI C054C	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
		TLC254C	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			12	
\/. -	Innut offeet voltage	TLC254AC	V _O = 1.4 V,	V _{IC} = 0,	25°C		0.9	5	mV
VIO	Input offset voltage	TLC254AC	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			6.5	IIIV
		TLC254BC	V _O = 1.4 V,	V _{IC} = 0,	25°C		0.34	2	
		TLC254BC	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			3	
αΛΙΟ	Average temperature coeffici offset voltage	ent of input			25°C to 70°C		1.8		μV/°C
	land offert some of the Alleton	4)	V 05V	V 0.5.V	25°C		0.1	60	A
110	Input offset current (see Note	4)	$V_0 = 2.5 V$,	$V_{IC} = 2.5 V$	70°C		7	300	pΑ
	land black amount (see \$1.4	4)	V- 05V	V 05V	25°C		0.6	60	^
IВ	Input bias current (see Note	1)	$V_0 = 2.5 \text{ V},$	$V_{IC} = 2.5 V$	70°C		40	600	pΑ
	Common mode input voltage	rango			25°C	-0.2 to 4	-0.3 to 4.2		
VICR	Common-mode input voltage range (see Note 5)				Full range	-0.2 to 3.5			V
					0°C	3	3.8		
Vон	High-level output voltage		$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	25°C	3.2	3.8		V
					70°C	3	3.8		
					0°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	25°C		0	50	mV
					70°C		0	50	
					0°C	4	27		
A_{VD}	Large-signal differential volta amplification	ge	$V_0 = 0.25 \text{ V to 2 V},$	$R_L = 10 \text{ k}\Omega$	25°C	5	23		V/mV
	apca.to				70°C	4	20		
					0°C	60	84		
CMRR	Common-mode rejection ratio)	V _{IC} = V _{ICR} min		25°C	65	80		dB
					70°C	60	85		
					0°C	60	94		
ksvr	Supply-voltage rejection ratio	(ΔV _{DD} /ΔV _{IO})	$V_{DD} = 5 \text{ V to } 10 \text{ V},$	$V_0 = 1.4 \text{ V}$	25°C	65	95		dB
					70°C	60	96		
			V- 25V	\/ 0.F.\/	0°C		3.1	7.2	
I_{DD}	Supply current (four amplifier	s)	V _O = 2.5 V, No load	$V_{IC} = 2.5 V,$	25°C		2.7	6.4	mA
					70°C		2.3	5.2	

† Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.

SLOS003G - JUNE 1983 - REVISED MARCH 2001

electrical characteristics at specified free-air temperature, V_{DD} = 10 V (unless otherwise noted)

	PARAMETER		TEST CON	DITIONS	T _A †		C, TLC2 C254B0		UNIT
						MIN	TYP	MAX	
		TLC254C	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
		1102540	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			12	
\/.a	Input offset voltage	TLC254AC	V _O = 1.4 V,	V _{IC} = 0,	25°C		0.9	5	mV
VIO	input onset voltage	TLC254AC	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			6.5	IIIV
		TLC254BC	V _O = 1.4 V,	V _{IC} = 0,	25°C		0.39	2	
		TLO254BC	$R_S = 50 \Omega$,	$R_L = 10 \text{ k}\Omega$	Full range			3	
∝VIO	Average temperature coeffi offset voltage	cient of input			25°C to 70°C		2		μV/°C
	hand effect comment (see Ne	(- 4)	V 5 V		25°C		0.1	60	A
ΙO	Input offset current (see No	ite 4)	$V_O = 5 V$	$V_{IC} = 5 V$	70°C		7	300	pΑ
	land this area was to be a New	- A)	V 5V		25°C		0.7	60	A
ΙΒ	Input bias current (see Note	9 4)	$V_O = 5 V$	$V_{IC} = 5 V$	70°C		50	600	pΑ
						-0.2	-0.3		
					25°C	to	to		
VICR	Common-mode input voltage	ge range				9	9.2		٧
	(see Note 5)				Full range	-0.2 to			
					1 un range	8.5			
					0°C	7.8	8.5		
Vон	High-level output voltage		$V_{ID} = 100 \text{ mV},$	$R_L = 10 \text{ k}\Omega$	25°C	8	8.5		V
					70°C	7.8	8.4		
					0°C		0	50	
V_{OL}	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	25°C		0	50	mV
					70°C		0	50	
					0°C	7.5	42		
AVD	Large-signal differential vol amplification	tage	$V_0 = 1 V to 6 V$	$R_L = 10 \text{ k}\Omega$	25°C	10	36		V/mV
	amplification				70°C	7.5	32		
					0°C	60	88		
CMRR	Common-mode rejection ra	ıtio	V _{IC} = V _{ICR} min		25°C	65	85		dB
					70°C	60	88		
	0 1 1 1				0°C	60	94		
ksvr	Supply-voltage rejection rate (ΔVDD/ΔVIO)	tio	$V_{DD} = 5 \text{ V to } 10 \text{ V},$	$V_0 = 1.4 \ V$	25°C	65	95		dB
	(A v DD/A v IO)				70°C	60	96		
			V- F.V	V- 5 V	0°C		4.5	8.8	
I _{DD}	Supply current (four amplifi	ers)	V _O = 5 V, No load	$V_{IC} = 5 V$,	25°C		3.8	8	mA
					70°C		3.2	6.8	

† Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.

TLC254, TLC254A, TLC254B, TLC254Y, TLC25L4, TLC25L4A, TLC25L4B TLC25L4Y, TLC25M4, TLC25M4A, TLC25M4B, TLC25M4Y LinCMOSTM QUAD OPERATIONAL AMPLIFIERS SLOS003G – JUNE 1983 – REVISED MARCH 2001

operating characteristics, $V_{DD} = 5 \text{ V}$

	PARAMETER	TE	ST CONDITION	NS	TA	TLC254	C, TLC2 C254B0		UNIT
						MIN	TYP	MAX	
				V((DD) = 1 V	0°C		4		
				V _{I(PP)} = 1 V	25°C		3.6		
SR	Slew rate at unity gain	$R_L = 10 \text{ k}\Omega$,	$C_L = 20 pF$,	V _{I(PP)} = 1 V	70°C		3		V/μs
J Six	Siew rate at unity gain	See Figure 1			0°C		3.1		ν/μ5
				V _{I(PP)} = 2.5 V	25°C		2.9		
					70°C		2.5		
٧n	Equivalent input noise voltage	f = 1 kHz,	$R_S = 20 \Omega$,	See Figure 2	25°C		25		nV/√ Hz
					0°C		340		
ВОМ	Maximum output-swing bandwidth	V _O = V _{OH} , See Figure 1	$C_L = 20 pF$,	$R_L = 10 \text{ k}\Omega,$	25°C		320		kHz
		See rigure r			70°C		260		
					0°C		2		
B ₁	Unity-gain bandwidth	V _I = 10 mV,	$C_L = 20 pF$,	See Figure 1	25°C		1.7		MHz
					70°C		1.3		
		10	(D	0 00 - 5	0°C		47°		
φm	Phase margin	V _I = 10 mV, See Figure 3	$f = B_1$,	$C_L = 20 pF$,	25°C		46°		
		2001 19410 0			70°C		43°		

operating characteristics, $V_{DD} = 10 \text{ V}$

	PARAMETER	TI	EST CONDITIO	NS	TA	TLC254 TL	C, TLC2 .C254B0		UNIT	
						MIN	TYP	MAX		
					0°C		5.9			
				V _{I(PP)} = 1 V	25°C		5.3			
SR	Slew rate at unity gain		$C_L = 20 pF$,		70°C		4.3		V/μs	
SIX	Siew rate at unity gain	See Figure 1			0°C		5.1		ν/μδ	
				$V_{I(PP)} = 5.5 V$	25°C	4.6				
					70°C		3.8			
V _n	Equivalent input noise voltage	f = 1 kHz,	$R_S = 20 \Omega$,	See Figure 2	25°C		25		nV/√ Hz	
					0°C		220			
ВОМ	Maximum output-swing bandwidth	V _O = V _{OH} , See Figure 1	$C_L = 20 pF$,	$R_L = 10 \text{ k}\Omega,$	25°C		200		kHz	
		occ riguic r			70°C		140			
					0°C		2.5			
B ₁	Unity-gain bandwidth	$V_I = 10 \text{ mV},$	$C_L = 20 pF$,	See Figure 1	25°C		2.2		MHz	
					70°C		1.8			
		10	, D	0 00 -5	0°C		50°			
φm	Phase margin	$V_I = 10 \text{ mV}, \qquad f = B_1,$ See Figure 3		$C_L = 20 pF$,	25°C		49°			
		2501194100			70°C		46°			

SLOS003G - JUNE 1983 - REVISED MARCH 2001

electrical characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$ (unless otherwise noted)

	PARAMETER		TEST CONI	DITIONS	T _A †	TL	.C25L40 C25L4A C25L4B	С	UNIT
						MIN	TYP	MAX	
		TLC25L4C	V _O = 1.4 V,	V _{IC} = 0,	25°C		1.1	10	
		TLG25L4C	$R_S = 50 \Omega$,	$R_L = 1 M\Omega$	Full range			12]
V:0	Input offeet voltage	TLC25L4AC	V _O = 1.4 V,	V _{IC} = 0,	25°C		0.9	5	mV
VIO	Input offset voltage	TLGZSL4AG	$R_S = 50 \Omega$,	$R_L = 1 M\Omega$	Full range			6.5	1117
		TLC25L4BC	V _O = 1.4 V,	V _{IC} = 0,	25°C		0.24	2	
		TLG23L4BC	$R_S = 50 \Omega$,	$R_L = 1 M\Omega$	Full range			3	
∝VIO	Average temperature coeff offset voltage	cient of input			25°C to 70°C		1.1		μV/°C
1	land offers administration of New Mark	.+- 4)	V- 05V	V:- 0.5.V	25°C		0.1	60	^
ΙΟ	Input offset current (see No	ite 4)	$V_0 = 2.5 V$,	$V_{IC} = 2.5 V$	70°C		7	300	pА
1	Innut high ourment (and Not	a 4)	V- 25V	\/:- 2.E.\/	25°C		0.6	60	^
lΒ	Input bias current (see Note	e 4)	$V_0 = 2.5 V$,	$V_{IC} = 2.5 V$	70°C		40	600	pА
	Common-mode input voltage	ne range			25°C	-0.2 to 4	-0.3 to 4.2		V
VICR	(see Note 5)	ge range			Full range	-0.2 to 3.5			٧
					0°C	3	4.1		
∨он	High-level output voltage		$V_{ID} = 100 \text{ mV},$	$R_L = 1 M\Omega$	25°C	3.2	4.1		V
					70°C	3	4.2		
					0°C		0	50	
VOL	Low-level output voltage		$V_{1D} = -100 \text{ mV},$	$I_{OL} = 0$	25°C		0	50	mV
					70°C		0	50	
	Lanca d'acad d'Managhalasal				0°C	50	680		
A_{VD}	Large-signal differential vol amplification	tage	$V_0 = 0.25 \text{ V to 2 V},$	$R_L = 1 M\Omega$	25°C	50	520		V/mV
	ap				70°C	50	380		
					0°C	60	95		
CMRR	Common-mode rejection ra	itio	$V_{IC} = V_{ICRmin}$		25°C	65	94		dB
					70°C	60	95		
	Complex colleges and to all				0°C	60	97		
ksvr	Supply-voltage rejection ra (ΔV _{DD} /ΔV _{IO})	IIO	$V_{DD} = 5 \text{ V to } 10 \text{ V},$	$V_0 = 1.4 V$	25°C	70	98		dB
	\-'UU'-'IU/				70°C	60	97		
			V = 2.5.V	\/ 2 F \/	0°C		48	84	
I_{DD}	Supply current (four amplifi	ers)	V _O = 2.5 V, No load	$V_{IC} = 2.5 V,$	25°C		40	68	μΑ
					70°C		31	56	

† Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.

TLC254A, TLC254B, TLC254Y, TLC25L4, TLC25L4A, TLC25L4B TLC25L4Y, TLC25M4, TLC25M4A, TLC25M4B, TLC25M4Y LinCMOSTM QUAD OPERATIONAL AMPLIFIERS SLOS003G – JUNE 1983 – REVISED MARCH 2001

electrical characteristics at specified free-air temperature, V_{DD} = 10 V (unless otherwise noted)

	PARAMETER		TEST CONI	DITIONS	τ _A †	TL TL	_C25L4C C25L4A C25L4B	С	UNIT
						MIN	TYP	MAX	
		TLC25L4C	$V_0 = 1.4 \text{ V},$	$V_{IC} = 0$,	25°C		1.1	10	
			$R_S = 50 \Omega$,	$R_L = 1 M\Omega$	Full range			12	
VIO	Input offset voltage	TLC25L4AC	$V_0 = 1.4 V,$	$V_{IC} = 0$,	25°C		0.9	5	m∨
10	par onoor romago		$R_S = 50 \Omega$,	$R_L = 1 M\Omega$	Full range			6.5	
		TLC25L4BC	$V_0 = 1.4 V,$	$V_{IC} = 0$,	25°C		0.26	2	
			$R_S = 50 \Omega$,	$R_L = 1 M\Omega$	Full range			3	
αΛΙΟ	Average temperature coeffi input offset voltage	cient of			25°C to 70°C		1		μV/°C
lio.	Input offeet current (see No	to 4)	Vo = 5 V	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	25°C		0.1	60	nΛ
IIO	Input offset current (see No	ile 4)	V _O = 5 V,	$V_{IC} = 5 V$	70°C		7	300	pА
	Innut high ourrent (see Not	. 4)	V- 5 V	\\ F\\	25°C		0.7	60	m A
ΙΒ	Input bias current (see Note	2 4)	V _O = 5 V,	$V_{IC} = .5 V$	70°C		50	600	pΑ
	Common-mode input voltage	ne range (see			25°C	-0.2 to 9	-0.3 to 9.2		V
VICR	Note 5)	ge range (eee			Full range	-0.2 to 8.5			V
					0°C	7.8	8.9		
Vон	High-level output voltage		V _{ID} = 100 mV,	$R_L = 1 M\Omega$	25°C	8	8.9		V
					70°C	7.8	8.9		
					0°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	IOL = 0	25°C		0	50	mV
					70°C		0	50	
	Lanca along the second and the second				0°C	50	1025		
A_{VD}	Large-signal differential vol amplification	tage	$V_0 = 1 V to 6 V$,	$R_L = 1 M\Omega$	25°C	50	870		V/mV
	априновноп				70°C	50	660		
					0°C	60	97		
CMRR	Common-mode rejection ra	tio	V _{IC} = V _{ICR} min		25°C	65	97		dB
					70°C	60	97		
					0°C	60	97		
k _{SVR}	Supply-voltage rejection rate (ΔV _{DD} /ΔV _{IO})	CIO CIO	$V_{DD} = 5 \text{ V to } 10 \text{ V},$	$V_0 = 1.4 \text{ V}$	25°C	70	97		dB
	(A · DD/ A • IO/				70°C	60	98		
				\/ F.\/	0°C		72	132	
I_{DD}	Supply current (four amplifi	V _O = 5 V, No load	$V_{IC} = 5 V$	25°C		57	92	μΑ	
					70°C		44	80	

[†] Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

^{5.} This range also applies to each input individually.

TLC254A, TLC254B, TLC254Y, TLC25L4, TLC25L4A, TLC25L4B TLC25L4Y, TLC25M4, TLC25M4A, TLC25M4B, TLC25M4Y LinCMOSTM QUAD OPERATIONAL AMPLIFIERS SLOS003G – JUNE 1983 – REVISED MARCH 2001

operating characteristics, $V_{DD} = 5 V$

	PARAMETER	TE	ST CONDITION	NS	TA	TL TL(С	UNIT	
				_		MIN	TYP	MAX	
					0°C		0.04		
				$V_{I(PP)} = 1 V$	25°C		0.03		
SR	Slew rate at unity gain	$R_L = 1 M\Omega$,	$C_L = 20 pF$,		70°C		0.03		V/μs
J SIX	Siew rate at unity gain	See Figure 1			0°C		0.03		ν/μ5
				$V_{I(PP)} = 2.5 V$	25°C		0.03		
					70°C		0.02		
Vn	Equivalent input noise voltage	f = 1 kHz,	$R_S = 20 \Omega$,	See Figure 2	25°C		70		nV/√ Hz
		., .,			0°C		6		
Вом	Maximum output-swing bandwidth	V _O = V _{OH} , See Figure 1	$C_L = 20 pF$,	$R_L = 1 M\Omega$,	25°C		5		kHz
		occ riguic r			70°C		4.5		
					0°C		100		
B ₁	Unity-gain bandwidth	$V_{I} = 10 \text{ mV},$	$C_L = 20 pF$,	See Figure 1	25°C		85		kHz
					70°C		65		
)/ ₁ 40 m)/	4 D	C: 20 = E	0°C		36°		
φm	n Phase margin	V _I = 10 mV, See Figure 3	$f = B_{1}$	$C_L = 20 pF$,	25°C		34°		
	3				70°C		30°		

operating characteristics, $V_{DD} = 10 \text{ V}$

	PARAMETER	TE	EST CONDITIO	TA	TLC25L4C TLC25L4AC TLC25L4BC			UNIT	
						MIN	TYP	MAX	
					0°C		0.05		
				V _{I(PP)} = 1 V	25°C		0.05		
SR	Slew rate at unity gain	$R_L = 1 M\Omega$,	$C_L = 20 pF$,		70°C		0.04		V/μs
J Six	Siew rate at unity gain	See Figure 1			0°C		0.05		ν/μ5
				$V_{I(PP)} = 5.5 V$	25°C		0.04		
					70°C		0.04		
٧n	Equivalent input noise voltage	f = 1 kHz,	$R_S = 20 \Omega$,	See Figure 2	25°C		70		nV/√ Hz
		., .,		5	0°C		1.3		
Вом	Maximum output-swing bandwidth	V _O = V _{OH} , See Figure 1	$C_L = 20 pF$,	$R_L = 1 M\Omega$,	25°C		1		kHz
		See rigure r			70°C		0.9		
					0°C		125		
B ₁	Unity-gain bandwidth	$V_{I} = 10 \text{ mV},$	$C_{L} = 20 pF$,	See Figure 1	25°C		110		kHz
					70°C		90		
)/ 40 m)/	, 5	0 00 - 5	0°C		40°		
φm	hm Phase margin	V _I = 10 mV, See Figure 3	$f = B_1$	$C_L = 20 pF$,	25°C		38°]
		guio o			70°C		34°		1

TLC254A, TLC254B, TLC254Y, TLC25L4, TLC25L4A, TLC25L4B TLC25L4Y, TLC25M4, TLC25M4A, TLC25M4B, TLC25M4Y LinCMOSTM QUAD OPERATIONAL AMPLIFIERS SLOS003G – JUNE 1983 – REVISED MARCH 2001

electrical characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$ (unless otherwise noted)

	PARAMETER		TEST CONI	DITIONS	T _A †	TLO	.C25M40 C25M4A C25M4B	С	UNIT
						MIN	TYP	MAX	
		TLC25M4C	$V_0 = 1.4 V,$	$V_{IC} = 0$,	25°C		1.1	10	
		TEO20W40	$R_S = 50 \Omega$,	$R_L = 100 \text{ k}\Omega$	Full range			12	
VIO	Input offset voltage	TLC25M4AC	$V_0 = 1.4 V,$	$V_{IC} = 0$,	25°C		0.9	5	mV
1 10	input onset voltage	12020W4710	$R_S = 50 \Omega$,	$R_L = 100 \text{ k}\Omega$	Full range			6.5	111.4
		TLC25M4BC	$V_0 = 1.4 V,$	$V_{IC} = 0$,	25°C		0.25	2	
		TEOZOWIADO	$R_S = 50 \Omega$,	$R_L = 100 \text{ k}\Omega$	Full range			3	
∝VIO	Average temperature c input offset voltage	oefficient of			25°C to 70°C		1.7		μV/°C
1	Innut effect ourrent (see	Note 4)	V= 25V	V:- 25V	25°C		0.1	60	- A
10	Input offset current (see	e Note 4)	$V_0 = 2.5 V$,	$V_{IC} = 2.5 V$	70°C		7	300	pΑ
Ī	Innut high gurrant (age	Note 4)	V= 25V	V:- 25V	25°C		0.6	60	m A
ΙΒ	Input bias current (see	Note 4)	$V_0 = 2.5 V$,	$V_{IC} = 2.5 V$	70°C		40	600	pΑ
	Common-mode input v	oltage range			25°C	-0.2 t0 4	-0.3 to 4.2		V
VICR	(see Note 5)	onago rango			Full range	-0.2 to 3.5			V
					0°C	3	3.9		
Vон	High-level output voltag	ge	$V_{ID} = 100 \text{ mV},$	$R_L = 100 \text{ k}\Omega$	25°C	3.2	3.9		V
					70°C	3	4		
					0°C		0	50	
VOL	Low-level output voltag	е	$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	25°C		0	50	mV
					70°C		0	50	
	1 1 1 - 1 - 1 1 - 1 1	l It			0°C	15	200		
AVD	Large-signal differentia amplification	i voitage	$V_0 = 0.25 \text{ V to 2 V},$	$R_L = 100 \text{ k}\Omega$	25°C	25	170		V/mV
	amplification				70°C	15	140		
					0°C	60	91		
CMRR	Common-mode rejection	on ratio	V _{IC} = V _{ICR} min		25°C	65	91		dB
					70°C	60	92		
	0 1 1				0°C	60	92		
k _{SVR}	Supply-voltage rejectio (ΔV _{DD} /ΔV _{IO})	n ratio	$V_{DD} = 5 \text{ V to } 10 \text{ V},$	$V_0 = 1.4 \text{ V}$	25°C	70	93		dB
	יטטיביוט/				70°C	60	94		
			V- 25V	V 25V	0°C		500	1280	
I_{DD}	Supply current (four am	nplifiers)	$V_O = 2.5 \text{ V},$ No load	$V_{IC} = 2.5 V,$	25°C		420	1120	μΑ
					70°C		340	880	

[†] Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

^{5.} This range also applies to each input individually.

SLOS003G - JUNE 1983 - REVISED MARCH 2001

electrical characteristics at specified free-air temperature, V_{DD} = 10 V (unless otherwise noted)

	PARAMETER		TEST COND	ITIONS	Τ _Α †	TL	.C25M40 C25M4A C25M4B	С	UNIT
						MIN	TYP	MAX	
		TLC25M4C	$V_0 = 1.4 \text{ V},$	$V_{IC} = 0$,	25°C		1.1	10	
			$R_S = 50 \Omega$,	$R_L = 100 \text{ k}\Omega$	Full range			12	
VIO	Input offset voltage	TLC25M4AC	$V_0 = 1.4 V$,	$V_{IC} = 0$,	25°C		0.9	5	mV
	par onoor romage		$R_S = 50 \Omega$,	R _L = 100 kΩ	Full range			6.5	
		TLC25M4BC	$V_0 = 1.4 V$,	$V_{IC} = 0$,	25°C		0.26	2	
		. = 0 = 0 5 0	$R_S = 50 \Omega$,	R _L = 100 kΩ	Full range			3	
αVIO	Average temperature coeff offset voltage	icient of input			25°C to 70°C		2.1		μV/°C
li o	Input offeet ourrent (see No	ato 4)	V _O = 5 V,	V _{IC} = 5 V	25°C		0.1	60	5 Λ
IIO	Input offset current (see No	ne 4)	νO = 5 ν,	AIC = 2 A	70°C		7	300	pА
1.5	Input bias current (see Not	2.4)	Vo - 5 V	\\.o - F \\	25°C		0.7	60	nΛ
IB	input bias current (see Not	e 4)	$V_0 = 5 V$,	$V_{IC} = 5 V$	70°C		50	600	pΑ
V	Common-mode input volta	ge range (see			25°C	-0.2 to 9	-0.3 to 9.2		V
VICR	Note 5)				Full range	-0.2 to 8.5			V
					0°C	7.8	8.7		
∨он	High-level output voltage		$V_{ID} = 100 \text{ mV},$	$R_L = 100 \text{ k}\Omega$	25°C	8	8.7		V
					70°C	7.8	8.7		
					0°C		0	50	
VOL	Low-level output voltage		$V_{ID} = -100 \text{ mV},$	$I_{OL} = 0$	25°C		0	50	mV
					70°C		0	50	
		_			0°C	15	320		
AVD	Large-signal differential vol amplification	tage	$V_0 = 1 V \text{ to } 6 V$	$R_L = 100 \text{ k}\Omega$	25°C	25	275		V/mV
	ampilioation				70°C	15	230		
					0°C	60	94		
CMRR	Common-mode rejection ra	atio	V _{IC} = V _{ICR} min		25°C	65	94		dB
					70°C	60	94		
					0°C	60	92		
k _{SVR}	Supply-voltage rejection rat	io (ΔV _{DD} /ΔV _{IO})	$V_{DD} = 5 \text{ V to } 10 \text{ V},$	$V_0 = 1.4 \text{ V}$	25°C	70	93		dB
L					70°C	60	94		
			V 5V		0°C		690	1600	
I_{DD}	Supply current (four amplifi	ers)	V _O = 5 V, No load	$V_{IC} = 5 V$	25°C		570	1200	μΑ
					70°C		440	1120	

† Full range is 0°C to 70°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

^{5.} This range also applies to each input individually.

TLC254, TLC254A, TLC254B, TLC254Y, TLC25L4, TLC25L4A, TLC25L4B TLC25L4Y, TLC25M4, TLC25M4A, TLC25M4B, TLC25M4Y LinCMOSTM QUAD OPERATIONAL AMPLIFIERS SLOS003G – JUNE 1983 – REVISED MARCH 2001

operating characteristics, $V_{DD} = 5 \text{ V}$

	PARAMETER	ті	EST CONDITIO	NS	TA	TL TL(TL(C	UNIT	
						MIN	TYP	MAX	
				.,	0°C		0.46		V/μs
				$V_{I(PP)} = 1 V$	25°C		0.43		V/μs
SR	Slew rate at unity gain	$R_L = 100 \text{ k}\Omega$,	$C_L = 20 pF$,		70°C		0.36		
J Six	Siew rate at unity gain	See Figure 1			0°C		0.43		\//ua
				$V_{I(PP)} = 2.5 V$	25°C		0.40		V/μs
					70°C		0.34		
٧n	Equivalent input noise voltage	f = 1 kHz,	$R_S = 20 \Omega$,	See Figure 2	25°C		32		nV/√ Hz
		[,, ,,	0 00 5	D 40010	0°C		60		
Вом	Maximum output-swing bandwidth	V _O = V _{OH} , See Figure 1	$C_L = 20 \text{ pF},$	$R_L = 100 \text{ k}\Omega$	25°C		55		kHz
		occ riguic r			70°C		50		
					0°C		610		
В1	Unity-gain bandwidth	$V_{I} = 10 \text{ mV},$	$C_L = 20 pF$,	See Figure 1	25°C		525		kHz
					70°C		400		
		10	(D	0 00 = E	0°C		41°		
φm	Phase margin	V _I = 10 mV, See Figure 3	$f = B_{1}$	$C_L = 20 pF$,	25°C		40°		
		Goo i iguic o			70°C		39°		

operating characteristics, $V_{DD} = 10 \text{ V}$

	PARAMETER	т	EST CONDITIO	NS	TA	TL TL(C	UNIT	
				_		MIN	TYP	MAX	
					0°C		0.67		
				V _{I(PP)} = 1 V	25°C		0.62		
SR	Slew rate at unity gain	$R_L = 100 \text{ k}\Omega$,	$C_{L} = 20 pF$,		70°C		0.51		\//uo
SK	Siew rate at utility gain	See Figure 1			0°C		0.61		V/μs
				$V_{I(PP)} = 5.5 V$	25°C		0.56		
					70°C		0.46		
٧n	Equivalent input noise voltage	f = 1 kHz,	$R_S = 20 \Omega$,	See Figure 2	25°C		32		nV/√ Hz
		., .,			0°C		40		
Вом	Maximum output-swing bandwidth	V _O = V _{OH} , See Figure 1	$C_L = 20 pF$,	$R_L = 100 \text{ k}\Omega$,	25°C		35		kHz
		See rigule r			70°C		30		
					0°C		710		
B ₁	Unity-gain bandwidth	$V_{I} = 10 \text{ mV},$	$C_L = 20 pF$,	See Figure 1	25°C		635		kHz
					70°C		510		1
		10 11	, 5	0 00 5	0°C		44°		
φm	m Phase margin	V _I = 10 mV, See Figure 3	$f = B_1$	$C_L = 20 pF$,	25°C		43°		
	THIS I WAS STORY OF THE STORY O				70°C		42°]

SLOS003G - JUNE 1983 - REVISED MARCH 2001

electrical characteristics, $V_{DD} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

	DADAMETED	TEST	Т	LC254\	′	T	LC25L4	Υ	TI	_C25M4	Υ	
	PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	$V_O = 1.4 \text{ V},$ $V_{IC} = 0 \text{ V},$ $R_S = 50 \Omega,$ See Note 6		1.1	10		1.1	10		1.1	10	mV
αVIO	Average temperature coefficient of input offset voltage			1.8			1.1			1.7		μV/°C
I _{IO}	Input offset current (see Note 4)	$V_O = V_{DD}/2,$ $V_{IC} = V_{DD}/2$		0.1	60		0.1	60		0.1	60	pA
I _{IB}	Input bias current (see Note 4)	$V_O = V_{DD}/2,$ $V_{IC} = V_{DD}/2$		0.6	60		0.6	60		0.6	60	pA
VICR	Common-mode input voltage range (see Note 5)		-0.2 to 4	-0.3 to 4.2		-0.2 to 4	-0.3 to 4.2		-0.2 to 4	-0.3 to 4.2		V
Vон	High-level output voltage	$V_{ID} = 100 \text{ mV},$ $R_L = 100 \text{ k}\Omega$	3.2	3.8		3.2	4.1		3.2	3.9		V
VOL	Low-level output voltage	$V_{ID} = -100 \text{ mV},$ $I_{OL} = 0$		0	50		0	50		0	50	mV
A _{VD}	Large-signal differential voltage amplification	V _O = 0.25 V, See Note 6	5	23		50	520		25	170		V/mV
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min	65	80		65	94		65	91		dB
ksvr	Supply-voltage rejection ratio (ΔV _{DD} /ΔV _{IO})	$V_{DD} = 5 \text{ V to } 10 \text{ V},$ $V_{O} = 1.4 \text{ V}$	65	95		70	97		70	93		dB
I _{DD}	Supply current	V _O = V _{DD} /2, V _{IC} = V _{DD} /2, No load		2.7	6.4		0.04	0.068		0.42	1.12	mA

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

operating characteristics, V_{DD} = 5 V, T_A = 25°C

	ADAMETED	TEST CO	NDITIONS	Т	LC254Y	,	TI	_C25L4	Υ	TL	.C25M4	Υ	UNIT
	ARAMETER	TEST CC	SMOTTIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNII
SR	Slew rate at	C _L = 20 pF,	V _{I(PP)} = 1 V		3.6			0.03			0.43		V/μs
SK.	unity gain	See Note 6	$V_{I(PP)} = 2.5 V$		2.9			0.03			0.40		ν/μδ
Vn	Equivalent input noise voltage	f = 1 kHz,	R _S = 20 Ω		2.5			70			32		nV/√ Hz
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 10 \text{ k}\Omega$	C _L = 20 pF,		320			5			55		kHz
B ₁	Unity-gain bandwidth	V _I = 10 mV,	C _L = 20 pF		1.7			0.085			0.525		MHz
φm	Phase margin	f = B ₁ , C _L = 20 pF	V _I = 10 mV,		46°			34°			40°		

NOTE 6: For low-bias mode, $R_L = 1 \text{ M}\Omega$, for medium-bias mode, $R_L = 100 \text{ k}\Omega$, and for high-bias mode, $R_L = 10 \text{ k}\Omega$.

^{5.} This range also applies to each input individually. 6. For low-bias mode, $R_L = 1 \text{ M}\Omega$, for medium-bias mode, $R_L = 100 \text{ k}\Omega$, and for high-bias mode, $R_L = 10 \text{ k}\Omega$.

PARAMETER MEASUREMENT INFORMATION

single-supply versus split-supply test circuits

Because the TLC25_4, TLC25_4A, and TLC25_4B are optimized for single-supply operation, circuit configurations used for the various tests often present some inconvenience since the input signal, in many cases, must be offset from ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to the negative rail. A comparison of single-supply versus split-supply test circuits is shown below. The use of either circuit gives the same result.

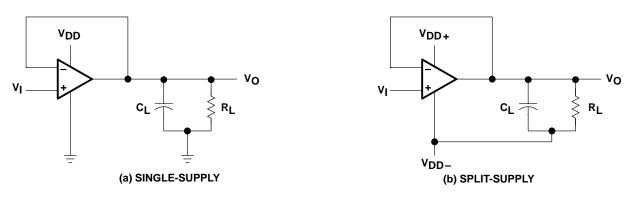


Figure 1. Unity-Gain Amplifier

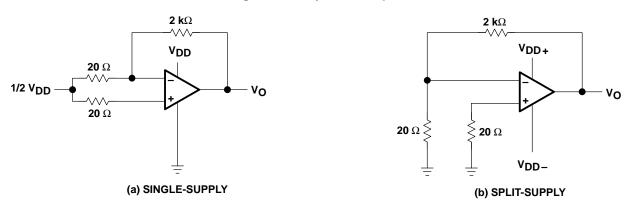


Figure 2. Noise-Test Circuit

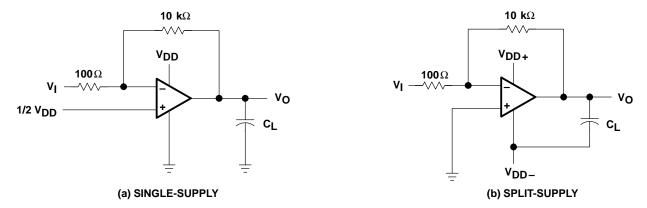


Figure 3. Gain-of-100 Inverting Amplifier

TYPICAL CHARACTERISTICS

Table of Graphs

				FIGURE
IDD	Supply current		vs Supply voltage vs Free-air temperature	4 5
		Low bias	vs Frequency	6
A_{VD}	Large-signal differential voltage amplification	Medium bias	vs Frequency	7
		High bias	vs Frequency	8
		Low bias	vs Frequency	6
	Phase shift	Medium bias	vs Frequency	7
		High bias	vs Frequency	8

SUPPLY CURRENT vs

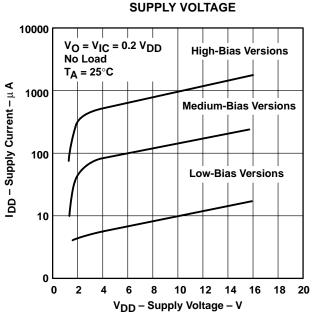


Figure 4

SUPPLY CURRENT vs FREE-AIR TEMPERATURE

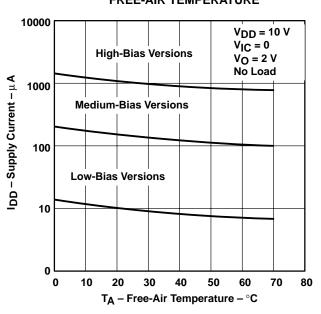


Figure 5

TYPICAL CHARACTERISTICS

LOW-BIAS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT

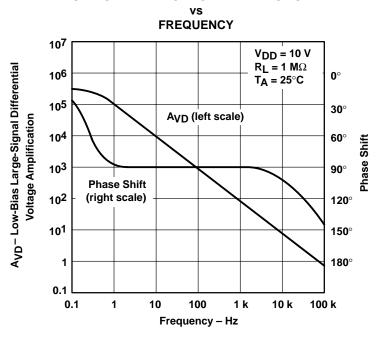


Figure 6

MEDIUM-BIAS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT

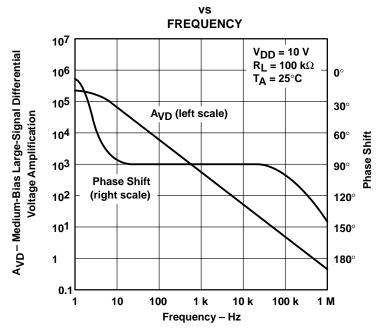


Figure 7

TYPICAL CHARACTERISTICS

HIGH-BIAS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT

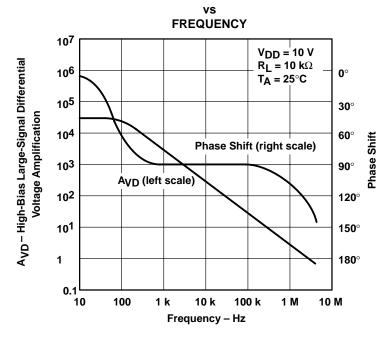


Figure 8

SLOS003G - JUNE 1983 - REVISED MARCH 2001

APPLICATION INFORMATION

latch-up avoidance

Junction-isolated CMOS circuits have an inherent parasitic PNPN structure that can function as an SCR. Under certain conditions, this SCR may be triggered into a low-impedance state, resulting in excessive supply current. To avoid such conditions, no voltage greater than 0.3 V beyond the supply rails should be applied to any pin. In general, the operational amplifiers supplies should be established simultaneously with, or before, application of any input signals.

output stage considerations

The amplifier's output stage consists of a source-follower-connected pullup transistor and an open-drain pulldown transistor. The high-level output voltage (V_{OH}) is virtually independent of the I_{DD} selection and increases with higher values of V_{DD} and reduced output loading. The low-level output voltage (V_{OL}) decreases with reduced output current and higher input common-mode voltage. With no load, V_{OL} is essentially equal to the potential of V_{DD} –/GND.

supply configurations

Even though the TLC25_4C series is are characterized for single-supply operation, they can be used effectively in a split-supply configuration if the input common-mode voltage (V_{ICR}), output swing (V_{OL} and V_{OH}), and supply voltage limits are not exceeded.

circuit layout precautions

Whenever extremely high circuit impedances are used, care must be exercised in layout, construction, board cleanliness, and supply filtering to avoid hum and noise pickup as well as excessive dc leakages.

PACKAGE OPTION ADDENDUM

15-Apr-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TLC254ACD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TLC254AC	Samples
TLC254ACN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLC254ACN	Samples
TLC254BCD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TLC254BC	Samples
TLC254BCDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TLC254BC	Samples
TLC254BCN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLC254BCN	Samples
TLC254CD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TLC254C	Samples
TLC254CDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TLC254C	Samples
TLC254CN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLC254CN	Samples
TLC254CNE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLC254CN	Samples
TLC25L4ACN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLC25L4ACN	Samples
TLC25L4ACNE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLC25L4ACN	Samples
TLC25L4BCD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	25L4BC	Samples
TLC25L4BCN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type		TLC25L4BCN	Samples
TLC25L4CD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TLC25L4C	Samples
TLC25L4CDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TLC25L4C	Samples
TLC25L4CN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type		TLC25L4CN	Samples
TLC25M4CD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TLC25M4C	Samples

PACKAGE OPTION ADDENDUM

15-Apr-2017

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TLC25M4CN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLC25M4CN	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

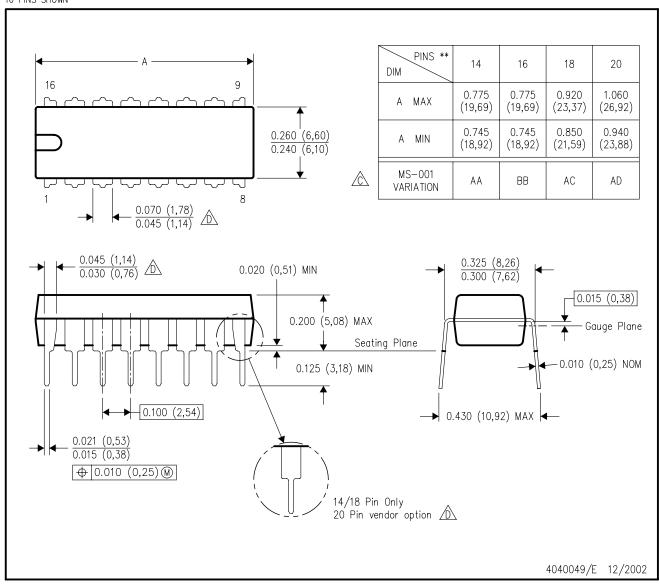
TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

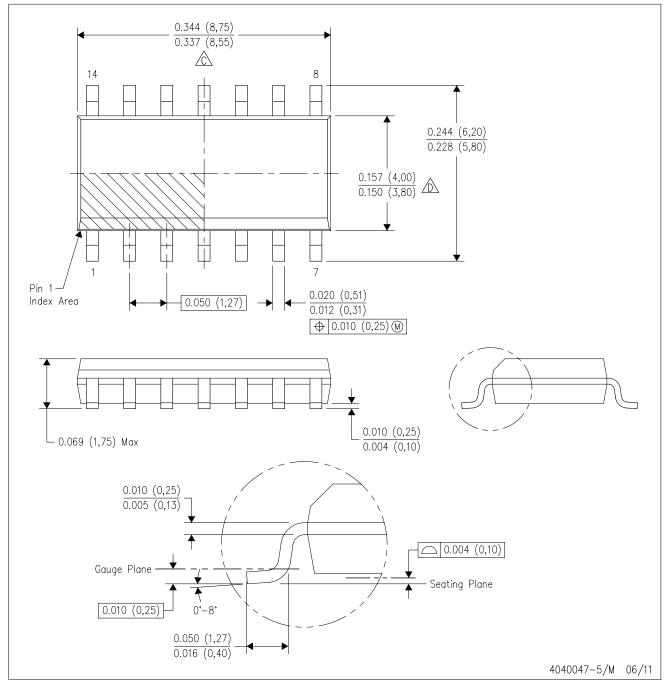

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

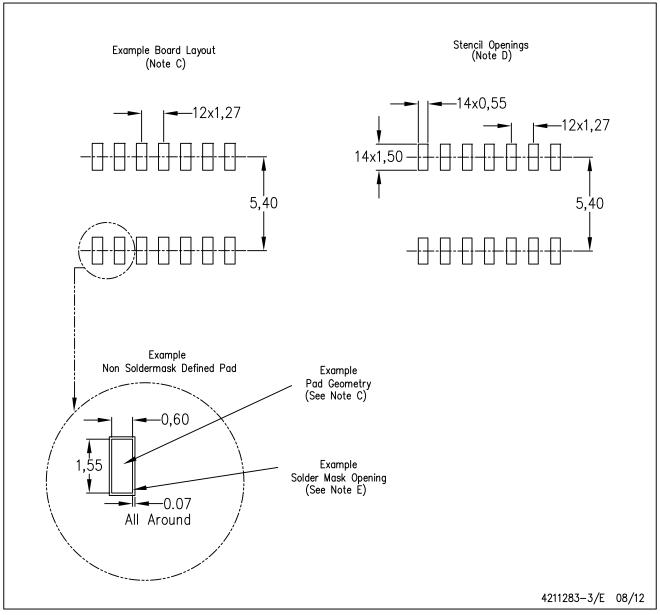


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE



NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.