SGM450 Low Power, High Accuracy Analog Output Temperature Sensor

GENERAL DESCRIPTION

The SGM450 is a precision integrated-circuit linear analog temperature sensor with an output voltage proportional to temperature, which can be used in multiple analog temperature-sensing or temperature compensation applications. Featuring typical accuracy of ± 0.5 °C from 0 °C to +85 °C temperature range, the SGM450 is more accurate than similar pin-compatible devices on the market. The SGM450 provides a positive slope output of 10mV/°C over a wide temperature range of -40°C to +150°C and it operates from a single 2.3V to 5.5V power supply.

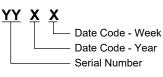
The SGM450 features a low 7.5µA typical quiescent current and a 420µs typical power-on time, and this low power consumption feature enables SGM450 suitable for battery-powered applications. A Class-AB structure output driver provides a strong 500µA maximum output current capability for driving heavy load up to 1000pF, making it well suited to source the input of a sample-and-hold analog-to-digital converter (ADC). With excellent accuracy and a strong linear output driver, the SGM450 analog output temperature sensor is a cost-effective alternative to passive thermistors.

The SGM450 is available in Green SC70-5 and SOT-23 packages. It is specified over the extended industrial temperature range from -40° C to $+150^{\circ}$ C.

FEATURES

- Wide Temperature Measurement Range: -40℃ to +150℃
- Temperature Accuracy: ±2°C (MAX): -40°C to +150°C
- Positive Slope Sensor Gain: 10mV/°C (TYP)
- Output Voltage Offset: 500mV at 0°C (TYP)
- Wide Power Supply Range: 2.3V to 5.5V
- Short-Circuit Protected Output
- Low Quiescent Current: 7.5µA (TYP)
- Class-AB Structure Output
- Able to Drive Capacitive Load up to 1000pF
- Available in Green SC70-5 and SOT-23 Packages

APPLICATIONS


Wireless and Telecom Infrastructure Automotive Infotainment Factory Automation and Control Test and Measurement

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION	
SGM450	SC70-5	-40°C to +150°C	SGM450A2XC5G/TR	QAXX	Tape and Reel, 3000	
	SOT-23	-40°C to +150°C	SGM450A2XN3LG/TR	Q9XX	Tape and Reel, 3000	

MARKING INFORMATION

NOTE: XX = Date Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

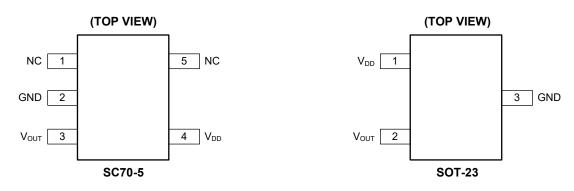
Supply Voltage, V _{DD}	6V
Output Voltage Range, VOUT	0.3V to V _{DD} + 0.3V
Output Current Range	30mA to 30mA
Latch-Up Current Range, Each Pin	200mA to 200mA
Package Thermal Resistance	
SC70-5, θ _{JA}	218°C/W
SOT-23, θ _{JA}	260°C/W
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
НВМ	4000V
CDM	1000V

RECOMMENDED OPERATING CONDITIONS

Input Voltage Range, V_{DD}2.3V to 5.5V Operating Ambient Temperature Range-40°C to +150°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.


ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

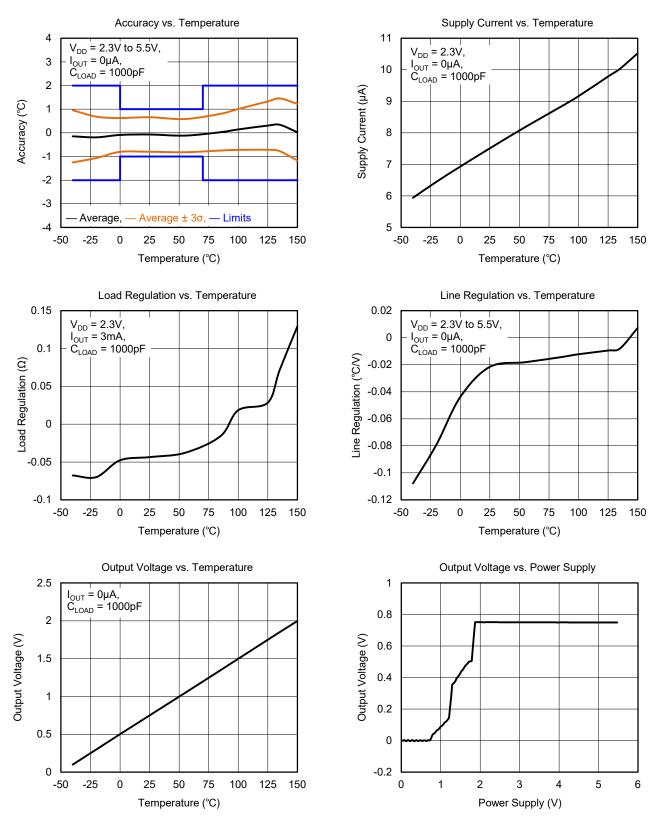
PIN CONFIGURATIONS

PIN DESCRIPTION

PIN			TVDE	FUNCTION				
SC70-5	SOT-23	NAME TYPE		FUNCTION				
1, 5		NC	_	No Internal Connection. This pin may be left floating or connected to GNI in application.				
2	3	GND	G	Ground Pin.				
3	2	V _{OUT}	0	Temperature Sensor Output. Output voltage is proportional to the temperature.				
4	1	V_{DD}	I	Positive Power Supply Pin.				

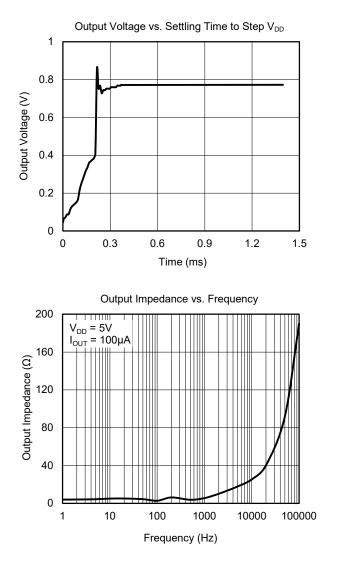
ELECTRICAL CHARACTERISTICS

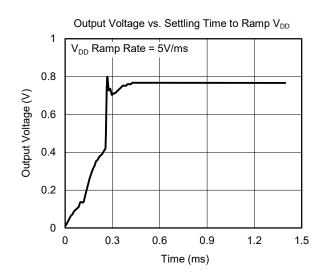
(V_{DD} = 2.3V to 5.5V, T_A = -40°C to +150°C, GND = Ground and no load, unless otherwise noted.)


PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Power Supply						•	
		$T_A = +25^{\circ}C, V_{DD} = 2.3V$		7.5	10		
Operating Current	I _{DD}	T _A = +150°C		11	16	μA	
Line Regulation	$\Delta^{\circ}C/\Delta V_{DD}$		-0.2	0.04	0.2	°C/V	
Sensor Accuracy							
		T _A = +25°C		±0.5			
•	T _{ACC}	$T_A = 0^{\circ}C$ to +85°C	-1.5	±0.5	1.5	°C	
		$T_{A} = -40^{\circ}C \text{ to } +150^{\circ}C$	-2.0	±0.5	2.0		
Sensor Output							
Offset Output Voltage	VOFFS	$T_A = 0^{\circ}C$		500		mV	
Temperature Coefficient (Sensor Gain)	Tc			10		mV/°C	
Output Nonlinearity (1)	V _{ONL}	$T_A = 0^{\circ}C$ to +85°C, no load		±0.5		°C	
Output Current	lout				500	μA	
Output Impedance	7	I _{OUT} = 100μA, f = 100Hz		3			
Output impedance	Z _{OUT}	Ι _{ΟUT} = 100μA, f = 500Hz		4		Ω	
Output Load Regulation		$T_A = 0^{\circ}C$ to +85°C, $I_{OUT} = 100\mu A$, $\Delta V_{OUT} / \Delta I_{OUT}$		0.1	0.6	Ω	
Power-On Time	t _{on}	Time to reach accuracy within ±0.5°C		420	1300	μs	
Typical Load Capacitance	C _{LOAD}				1000	pF	

NOTE:

1. Accuracy is defined as the error between the measured and reference output voltages, tabulated in the Table 2 at the specified conditions of supply voltage and temperature (expressed in °C). Accuracy limits include line regulation within the specified conditions. Accuracy limits do not include load regulation; they assume no DC load.


TYPICAL PERFORMANCE CHARACTERISTICS


```
T_A = +25°C, unless otherwise noted.
```


TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 T_A = +25°C, unless otherwise noted.

FUNCTIONAL BLOCK DIAGRAM

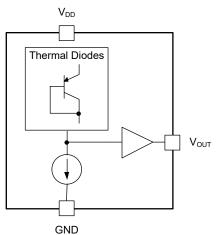


Figure 1. Block Diagram

DETAILED DESCRIPTION

The SGM450 is a linear analog temperature sensor with an output voltage proportional to temperature. Typical accuracy of temperature from 0°C to +85°C is ± 0.5 °C. The SGM450 provides a positive slope output of 10mV/°C over the full temperature range of -40°C to +150°C and a single power supply range from 2.3V to 5.5V. A Class-AB structure output driver provides a maximum output current of 500µA to drive capacitive load up to 1000pF.

Feature Description

As shown in Figure 3, the SGM450 is linear; however, a small V_{OUT} gain shift is present at temperatures above +100°C. When small shifts are expected, a piecewise linear function provides the best accuracy and is used for the device accuracy specifications.

The piecewise linear function uses three temperature ranges listed in Table 1. In equation form, the temperature-to-voltage V_{OUT} of the SGM450 is calculated by Equation 1:

$$V_{OUT} = (T_A - T_{INFL}) \times T_C + V_{OFFS}$$
(1)

where:

• V_{OUT} is the SGM450 temperature-to-voltage output for a given temperature.

• T_A is the ambient temperature in °C.

• T_{INFL} is the temperature inflection point for a piecewise segment in °C.

- T_c is the SGM450 temperature coefficient or gain.
- V_{OFFS} is the SGM450 voltage offset.

Therefore, the T_A temperature for a given V_{OUT} temperature-to-voltage output within a piecewise voltage range (V_{RANGE}) is calculated using Equation 2. For applications where the accuracy enhancement above +100°C is not required, use the first row of Table 1 for all voltages.

$$T_{A} = (V_{OUT} - V_{OFFS})/T_{C} + T_{INFL}$$
(2)

Table 1. Piecewise Linear Function Summary

T _A Range (°C)	V _{RANGE} (mV)	T _{INFL} (℃)	T _c (mV/℃)	V _{OFFS} (mV)
-40 to +100	< 1500	0	10	500
+100 to +125	1500 to 1751.3	100	10.05	1500
+125 to +150	> 1751.3	125	9.876	1751.3

Typical temperature-to-voltage V_{OUT} of the SGM450 across the full operating temperature range is listed in Table 2. The ideal linear columns represent the ideal linear V_{OUT} output response with respect to temperature while the piecewise linear columns indicate the small voltage shift at elevated temperatures.

Device Functional Mode

The singular functional mode of the SGM450 is an analog output directly proportional to temperature.

DETAILED DESCRIPTION (continued)

Table 2. Transfer Table

Temperature (°C)	V _{OUT} (mV) Ideal Linear Values	V _{OUT} (mV) Piecewise Linear Values	Temperature (℃)	V _{OUT} (mV) Ideal Linear Values	V _{OUT} (mV) Piecewise Linear Values	Temperature (℃)	V _{OUT} (mV) Ideal Linear Values	V _{OUT} (mV) Piecewise Linear Values
-40	100	100	25	750	750	90	1400	1400
-35	150	150	30	800	800	95	1450	1450
-30	200	200	35	850	850	100	1500	1500
-25	250	250	40	900	900	105	1550	1550.3
-20	300	300	45	950	950	110	1600	1600.5
-15	350	350	50	1000	1000	115	1650	1650.8
-10	400	400	55	1050	1050	120	1700	1701
-5	450	450	60	1100	1100	125	1750	1751.3
0	500	500	65	1150	1150	130	1800	1800.7
5	550	550	70	1200	1200	135	1850	1850.1
10	600	600	75	1250	1250	140	1900	1899.4
15	650	650	80	1300	1300	145	1950	1948.8
20	700	700	85	1350	1350	150	2000	1998.2

SGM450

APPLICATION INFORMATION

The features of the SGM450 make the device designed for various general temperature-sensing applications. The SGM450 can operate down to a 2.3V power supply with 7.5µA quiescent current consumption, respectively. As a result, the device is designed for battery-powered applications. The SGM450 is mounted in surface mount technology packages (SC70-5 and SOT-23).

Connection with ADC

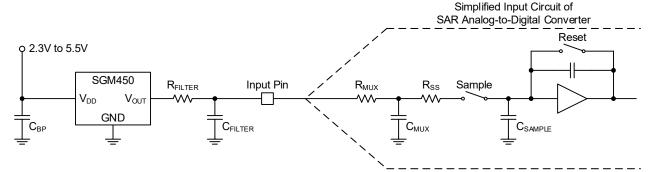


Figure 2. Suggested Connections to an ADC Input Stage

Design Requirements

See Figure 2 for suggested connections to an ADC input stage. Most CMOS-based ADCs have a sampling capacitor input structure. When the ADC charges the sampling capacitor (C_{SAMPLE}), the capacitor requires instantaneous charge from the output of the analog source temperature sensor. Therefore, the output impedance of the temperature sensor can affect ADC performance. In most cases, adding an external capacitor (C_{FILTER}) mitigates design challenges. The SGM450 is specified and characterized with a 1000pF maximum capacitive load (C $_{\text{LOAD}}$). Figure 2 shows C $_{\text{LOAD}}$ as the sum of C_{FILTER} + C_{MUX} + C_{SAMPLE} . It is recommended to maximize the C_{FILTER} value while allowing for the maximum specified ADC input capacitance (C_{MUX} + C_{SAMPLE}) to limit the total C_{LOAD} at 1000pF. In most cases, a 680pF C_{FILTER} provides a reasonable allowance for ADC input capacitance to minimize ADC sampling error and reduce noise coupling. An optional series resistor (R_{FILTER}) and C_{FILTER} provide additional low-pass filtering to reject system level noise. It is recommended to place R_{FILTER} and C_{FILTER} as close as possible to the ADC input for optimal performance.

Detailed Design Procedure

Depending on the input characteristics of the ADC, an external C_{FILTER} may be required. The value of C_{FILTER} depends on the size of the sampling capacitor (C_{SAMPLE}) and the sampling frequency while observing a maximum C_{LOAD} of 1000pF. The capacitor requirements can vary because the input stages of all ADCs are not identical. Figure 2 shows a general ADC application as an example only.

Application Curve

The analog output voltage of SGM450 is proportional to temperature and it provides a positive slope output of $10 \text{mV/}^{\circ}\text{C}$ over the full -40°C to +150°C temperature range.

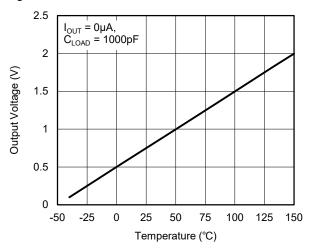
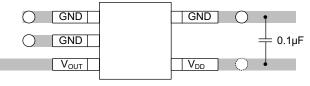


Figure 3. Output Voltage vs. Temperature

APPLICATION INFORMATION (continued)


Power Supply Recommendations

The low supply current and wide supply range of SGM450 allow the device to be easily powered from many sources.

Power supply bypassing is very important to reduce the noise of the power supply. In noisy environments, it is recommended to add a 0.1μ F capacitor from V_{DD} to GND to bypass the power supply voltage. Larger capacitances may be required and are dependent on the noise of the power supply.

Layout

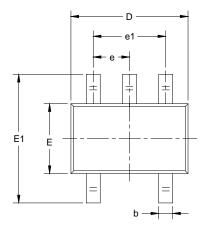
The layout of the SGM450 is simple. A power supply bypass capacitor is used to reduce noise, and the capacitor must be connected as close to V_{DD} pin as possible.

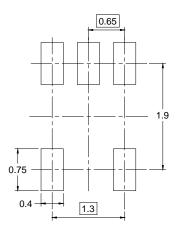
○ VIA to ground plane

◯ VIA to power plane

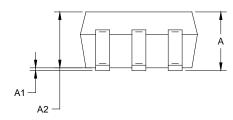
Figure 4. Recommended Layout: SC70-5 Package

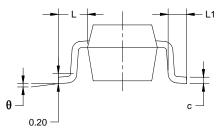
REVISION HISTORY


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

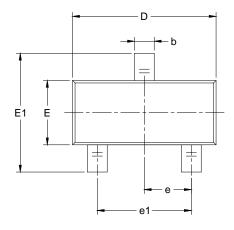

Changed from product preview to production data......All

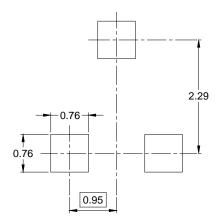
Page


PACKAGE OUTLINE DIMENSIONS

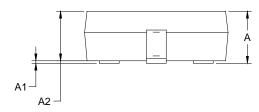

SC70-5

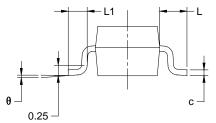
RECOMMENDED LAND PATTERN (Unit: mm)



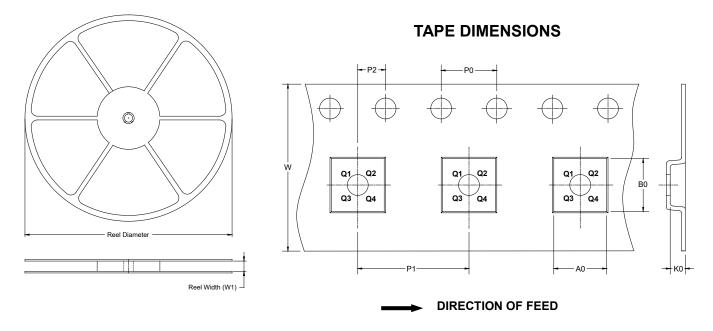


Symbol	-	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	0.800	1.100	0.031	0.043	
A1	0.000	0.100	0.000	0.004	
A2	0.800	1.000	0.031	0.039	
b	0.150	0.350	0.006	0.014	
С	0.080	0.220	0.003	0.009	
D	2.000	2.200	0.079	0.087	
E	1.150	1.350	0.045	0.053	
E1	2.150	2.450	0.085	0.096	
е	0.65	TYP	0.026	TYP	
e1	1.300	BSC	0.051 BSC		
L	0.525	REF	0.021	REF	
L1	0.260	0.460	0.010	0.018	
θ	0°	8°	0°	8°	


PACKAGE OUTLINE DIMENSIONS


SOT-23

RECOMMENDED LAND PATTERN (Unit: mm)



Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	0.89	1.12	0.035	0.044	
A1	0.01	0.10	0.000	0.004	
A2	0.88	1.02	0.035	0.040	
b	0.30	0.50	0.012	0.020	
С	0.08	0.20	0.003	0.008	
D	2.80	3.04	0.110	0.120	
E	1.20	1.40	0.047	0.055	
E1	2.10	2.64	0.083	0.104	
е	0.95	BSC	0.037	BSC	
e1	1.90	BSC	0.075 BSC		
L	0.54	REF	0.021	REF	
L1	0.40	0.60	0.016	0.024	
θ	0°	8°	0°	8°	

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SC70-5	7"	9.5	2.25	2.55	1.20	4.0	4.0	2.0	8.0	Q3
SOT-23	7"	9.5	3.15	2.77	1.22	4.0	4.0	2.0	8.0	Q3

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
7" (Option)	368	227	224	8	
7"	442	410	224	18	00002