CD4503B Types

Data sheet acquired from Harris Semiconductor SCHS068C – Revised October 2003

CMOS Hex Buffer

High-Voltage Types (20-Volt Rating)

3-State Non-Inverting Type

 CD4503B is a hex noninverting buffer with 3-state outputs having high sink- and source-current capability. Two disable controls are provided, one of which controls four buffers and the other controls the remaining two buffers.

The CD4503B types are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix), 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline packages (M, M96, MT, and NSR suffixes), and 16-lead thin shrink small-outline packages (PW and PWR suffixes).

Features:

- 1 TTL-load output drive capability
- 2 output disable controls ٠
- 3-state outputs
- Pin compatible with industry types MM80C97. MC14503, and 340097
- 5-V, 10-V, and 15-V parametric ratings Maximum input current of 1 µA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications:

- 3-state hex buffer for interfacing IC's with data buses
- CMOS to TTL hex buffer

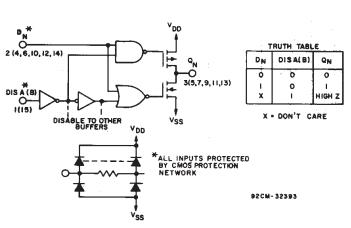
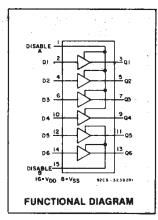



Fig. 1-Logic diagram of 1 to 6 identical buffers.

MAXIMUM RATINGS, Absolute-Maximum Values:
DC SUPPLY-VOLTAGE RANGE, (VDD)
Voltages referenced to VSS Terminal)0.5V to +20V
INPUT VOLTAGE RANGE, ALL INPUTS
DC INPUT CURRENT, ANY ONE INPUT
POWER DISSIPATION PER PACKAGE (PD);
For $T_A = -55^{\circ}C$ to $+100^{\circ}C$
For T _A = +100 ^o C to +125 ^o C Derate Linearity at 12mW/ ^o C to 200mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR
FOR T _A = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)
OPERATING-TEMPERATURE RANGE (T _A)55°C to +125°C
STORAGE TEMPERATURE RANGE (Tstg)65°C to +150°C
LEAD TEMPERATURE (DURING SOLDERING):
At distance 1/16 ± 1/32 inch (1.59 ± 0.79mm) from case for 10s max +265°C

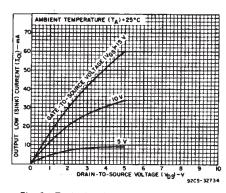


Fig. 2—Typical n-channel output low (sink) current characteristics.

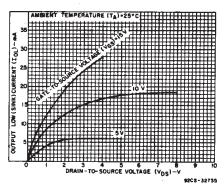
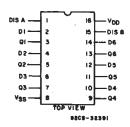
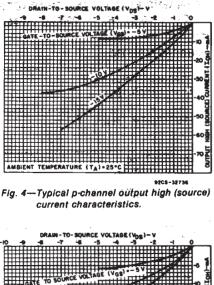
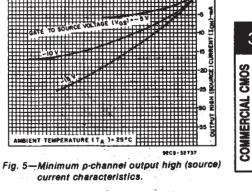



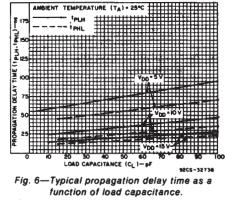
Fig. 3-Minimum n-channel output low (sink) current characteristics.


TERMINAL ASSIGNMENT


1 . S. Y

たったくたけがみ

STATIC ELECTRICAL CHARACTERISTICS


CHARAC- TERISTIC	CON	IDITIO	NS	LIMI	LIMITS AT INDICATED TEMPERATURES (°C)							
	Vo	VIN	VDD						+ 25		TS	
	(V)	(V)	(V)	-55	-40	+ 85	+ 125	Min.	Typ.	Max.	3	
Quiescent	-	0,5	5	1	1	30	30	<u> </u>	0.02	1		
Device		0,10	10	2	2	60	60	1	0.02	2	μA	
Current,		0,15	15	4	4	120	120	-	0.02	= 4 ¹	μιτι	
IDD Max.	· ·	0,20	20	20	20	600	600	-	0.04	20		
Output		0	-				, i					
Low	0.4	0	5	2.6	2.5	1.4	1.3	2.1	2.3	· . — .	· .	
(Sink)	0.5 1.5	0	10 15	6.5	6.4	3.9	3.8	5.5	6.2			
Current	1.5	U	15	19.2	18.9	.11.4	11.2	16.1	23			
IOL Min.							-					
Output High	4.6	5	5	-1.2	-1.16	-0.7	-0.7	-1.02	-1.9		mA	
(Source)	2.5	5	5	5.8	-5,7	-3.4	-3	-4.8	-6.1			
Current.	9.5	10	10	-3.1	-3	-1.9	-1.8	-2.6	-3.7	-		
IOH Min.	13.5	15	15	8.2	8	-4.9	-4.8	-6.8	-14.1	. 1		
Output		-					L					
Voltage:	— ["]	0.5	5		0.0	05		_	0	0.05		
Low-	an an Taona an an											
Level,	··	0,10	10		0.0	05		_	0	0.05		
VOL Max.	• • <u></u>	0,15	15		0.0	05		—	0	0.05	v	
Output											•	
Voltage:	·	0,5	5		4.9	95		4.95	5	<u>-</u>		
High-												
Level,		0,10	10	<u>.</u>		95		9.95	10			
VOH Min.	_	0,15	15			.95		14.95	15			
Input Low	0.5,4.5	_	5			5		-		1.5		
Voltage,	1,9		10		3			-	_	3		
VIL Max.	1.5,13.5		1,5	· · · · · ·	4					4		
Input High	0.5,4.5		5			5		3.5			v	
Voltage,	1,9		10	<u> </u>	3.5							
VIH Min.	1.5,13.5		15	<u> </u>	1		7		-			
Input					r <u> </u>	İ I						
Current	_	0,18	18	± 0.1	± 0.1	±1	±1	_	± 10 ⁻⁵	± 0.1		
IN Max.	•]						
3-State	<u> </u>		l — —					· · · · ·			μA	
Output									1			
Leakage	0,18	0,18	18	±0.4	± 0.4	± 12	± 12	-	± 10 ⁻⁴	± 0.4		
Current,			}			1			ļ			
IOUT											;	
Max.											1	

3

HIGH VOLTAGE ICs

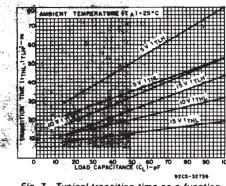


Fig. 7—Typical transition time as a function of load capacitance.

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected that operation is always within the following ranges:

CHARACTERISTIC	LIN	UNITS	
CHARACTERISTIC	Min.	Max.	UNITS
Supply-Voltage Range (For TA = Full Package- Temperature Range)	3	18	v

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = 25°C; input t_f, t_f = 20 ns, C_L = 50 pF, R_L = 200 k Ω unless otherwise specified.

	V _{DD}	LIN	UNITS	
CHARACTERISTIC	Ň,	LIMITS Typ. Max. 75 150 35 70 25 50 55 110 25 50 17 35 50 90 30 45 25 35 35 70 20 40 13 25 70 140 30 60		
Propagation Delay Time:	5	75	150	-
Low-to-High, tpLH	10	35	70	ns
	15	25	50	1
High-to-Low, tpHL	5	55	110	
1 1 1 60	10	25	50	ns
	15	17	35	
Transition Time:	5	50	90	
Low-to-High, tTLH	10	30	45	ns
	15	25	35	
High-to-Low, t _{THL}	5	35	70	1
	10	20	40	ns
	15	13	25	
3-State Propagation Delay Time: $R_L = 1 k\Omega$	5	70	140	
tPHZ, tPZH	10	30	60	ns
	15	25	50	1
tpzL, tpLz	5	90	180	
	10	40	80	ns
	15	35	70	

500

PG

ŀ

15

4

6

10

12

14

8

16

3

5

7

H

13

Fig. 9—Dynamic power dissipation test circuit.

9205-32741

ENT

DISSIPATION (PD)

POWER

TEMPERATURE (TA) = 25"

C. 50 I

2 4 6 8 10 W2C5-32740

4 • • Ho3

4 6 8 2 4 6 FREQUENCY (1)-KHz

Fig. 8—Typical power dissipation as a function

of frequency.

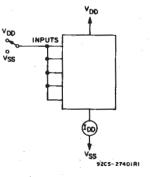
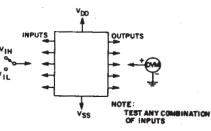



Fig. 10-Quiescent-device-current test circuit.

92C5-27441R1

Fig. 11-Input-voltage test circuit.

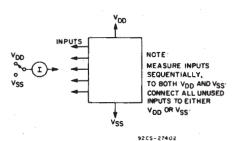


Fig. 12—Input current test circuit.

Dimensions and pad layout for CD4503BH

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch).

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
CD4503BE	ACTIVE	PDIP	Ν	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD4503BE	Samples
CD4503BEE4	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD4503BE	Samples
CD4503BF	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	CD4503BF	Samples
CD4503BF3A	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	CD4503BF3A	Samples
CD4503BM	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4503BM	Samples
CD4503BM96	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4503BM	Samples
CD4503BNSR	ACTIVE	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD4503B	Samples
CD4503BPW	ACTIVE	TSSOP	PW	16	90	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM503B	Samples
CD4503BPWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM503B	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

PACKAGE OPTION ADDENDUM

14-Aug-2021

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

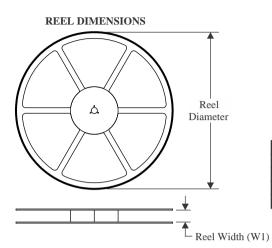
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

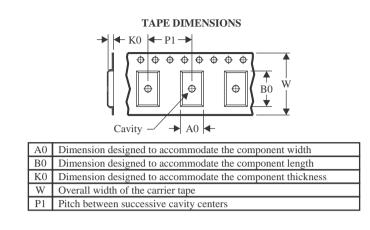
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF CD4503B, CD4503B-MIL :

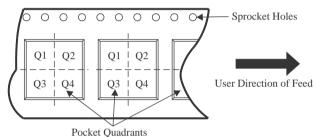
• Catalog : CD4503B

• Military : CD4503B-MIL


NOTE: Qualified Version Definitions:

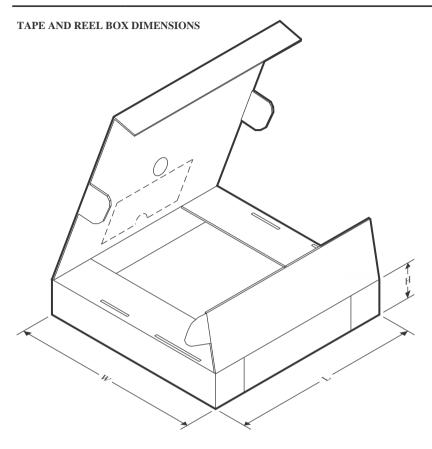

• Catalog - TI's standard catalog product

• Military - QML certified for Military and Defense Applications


3-Jun-2022

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD4503BM96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD4503BNSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
CD4503BPWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

Pack Materials-Page 1

PACKAGE MATERIALS INFORMATION

3-Jun-2022

*All dimensions are nominal

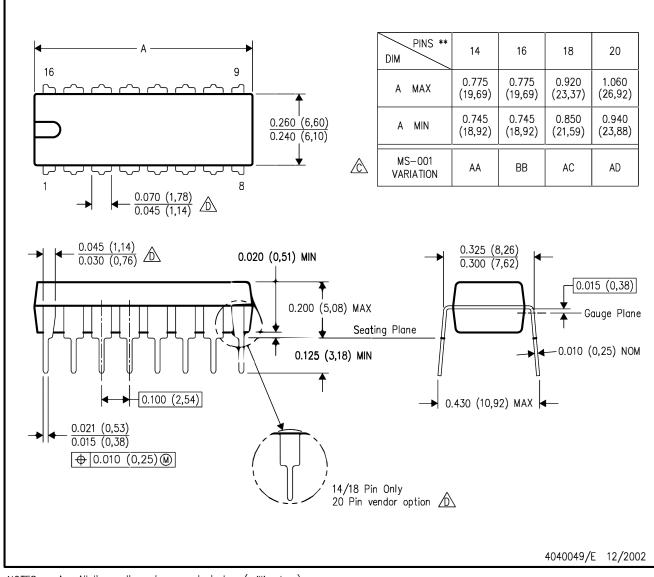
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD4503BM96	SOIC	D	16	2500	340.5	336.1	32.0
CD4503BNSR	SO	NS	16	2000	356.0	356.0	35.0
CD4503BPWR	TSSOP	PW	16	2000	356.0	356.0	35.0

PACKAGE MATERIALS INFORMATION

3-Jun-2022

T - Tube height L - Tube length W - Tube width

- B - Alignment groove width


*All	dimensions are nominal
------	------------------------

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
CD4503BE	N	PDIP	16	25	506	13.97	11230	4.32
CD4503BE	N	PDIP	16	25	506	13.97	11230	4.32
CD4503BEE4	N	PDIP	16	25	506	13.97	11230	4.32
CD4503BEE4	N	PDIP	16	25	506	13.97	11230	4.32
CD4503BM	D	SOIC	16	40	507	8	3940	4.32
CD4503BPW	PW	TSSOP	16	90	530	10.2	3600	3.5

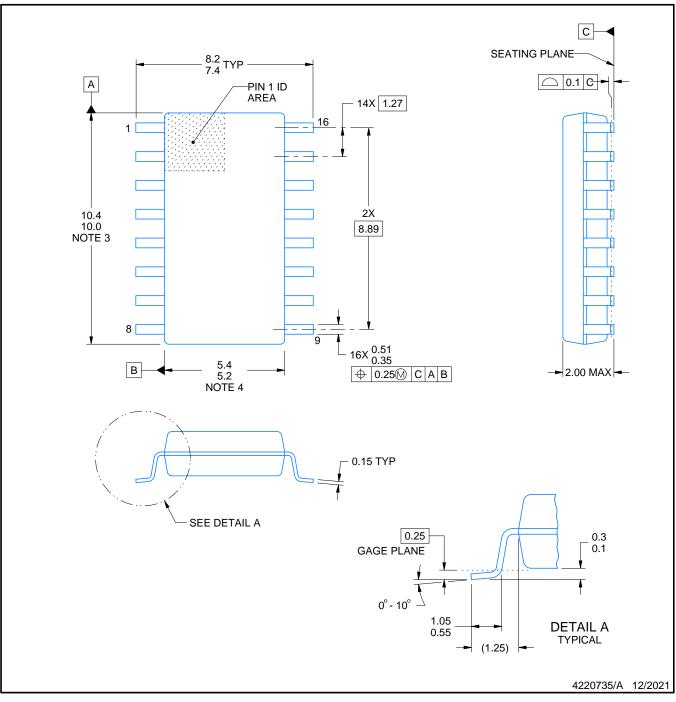
N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- A Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

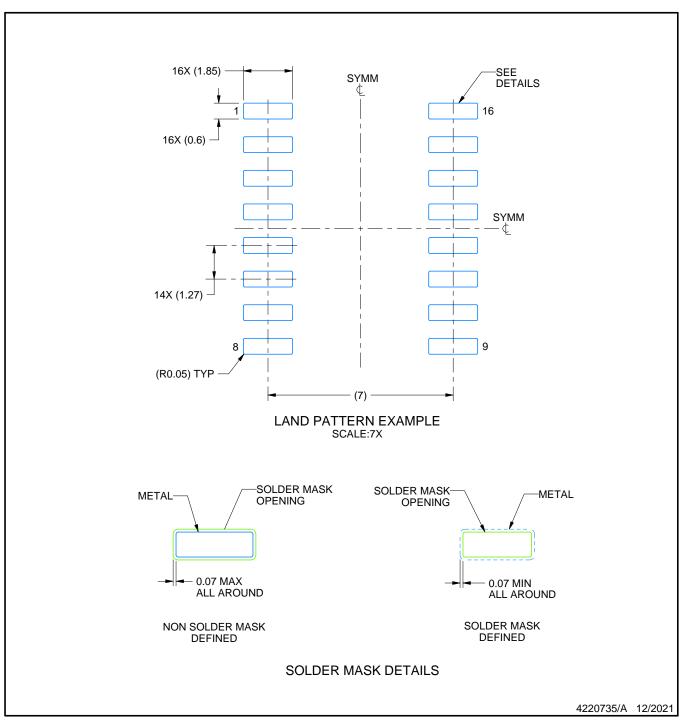

NS0016A

PACKAGE OUTLINE

SOP - 2.00 mm max height

SOP

NOTES:


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.

NS0016A

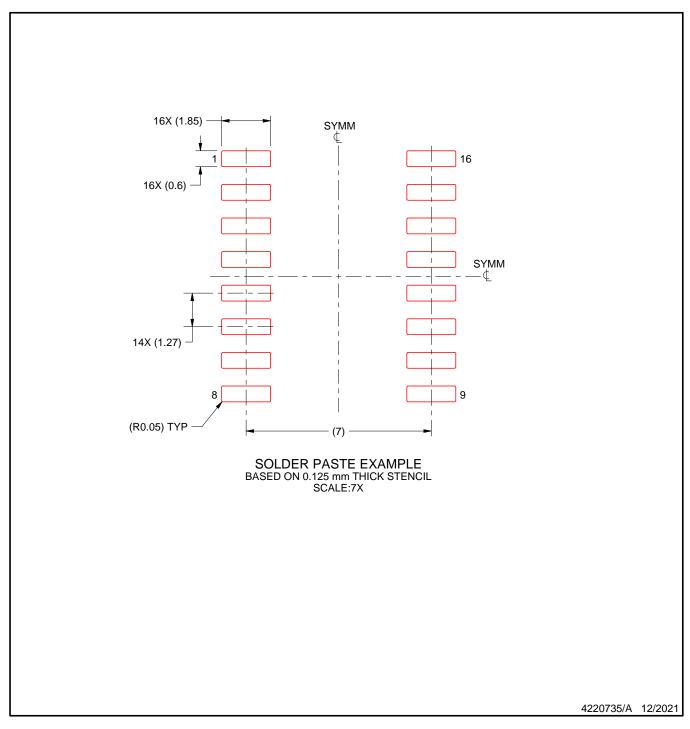
EXAMPLE BOARD LAYOUT

SOP - 2.00 mm max height

SOP

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

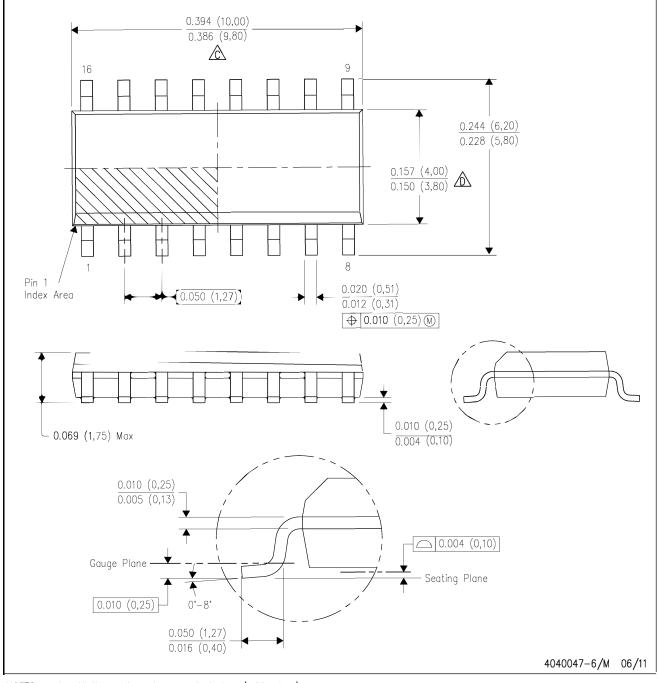

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NS0016A

EXAMPLE STENCIL DESIGN

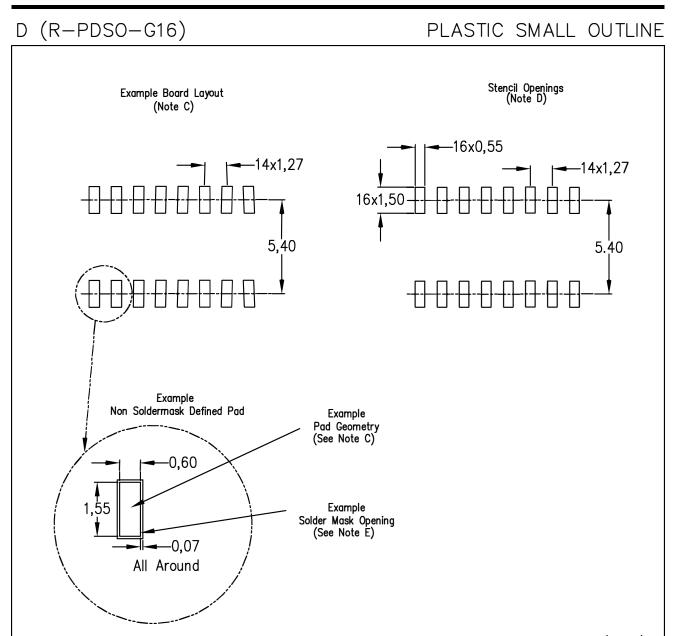
SOP - 2.00 mm max height

SOP


NOTES: (continued)

8. Board assembly site may have different recommendations for stencil design.

^{7.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

4211283-4/E 08/12

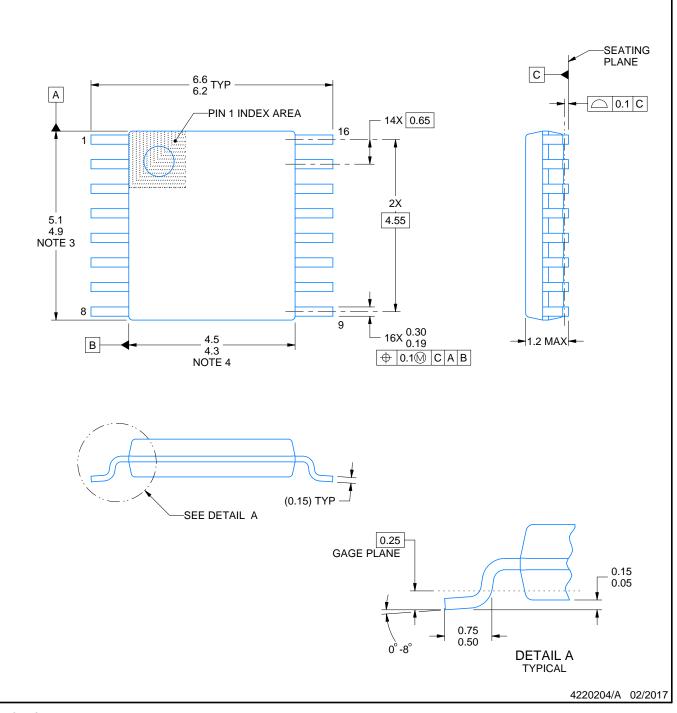
NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Publication IPC-7351 is recommended for alternate designs.

D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.

E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

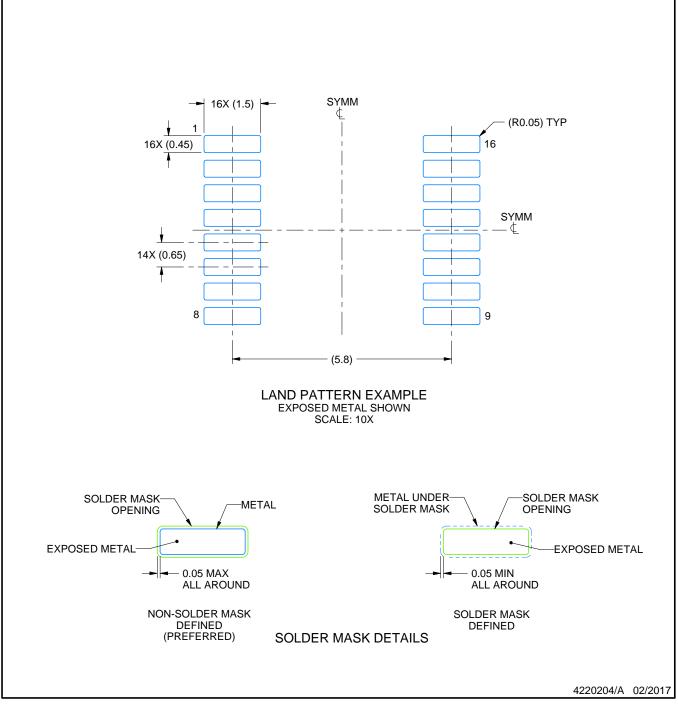

PW0016A

PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

PW0016A

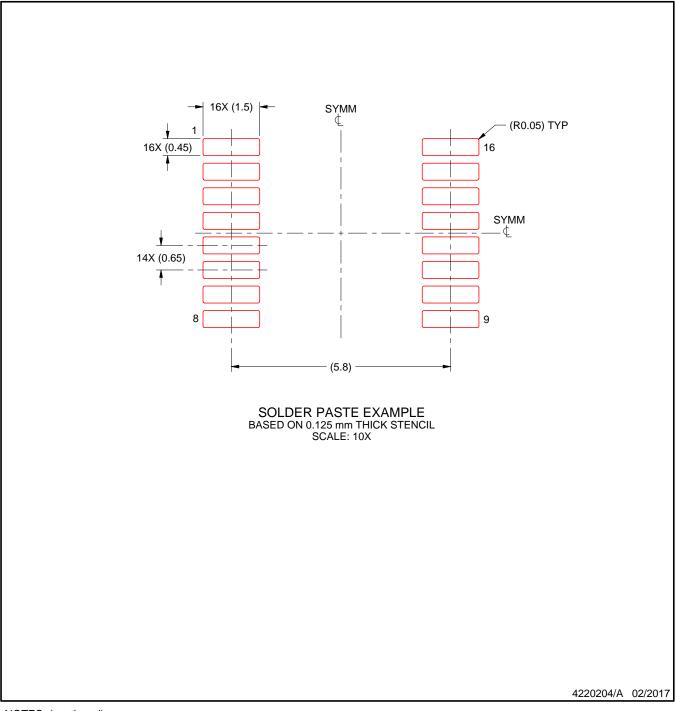
EXAMPLE BOARD LAYOUT

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.


7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

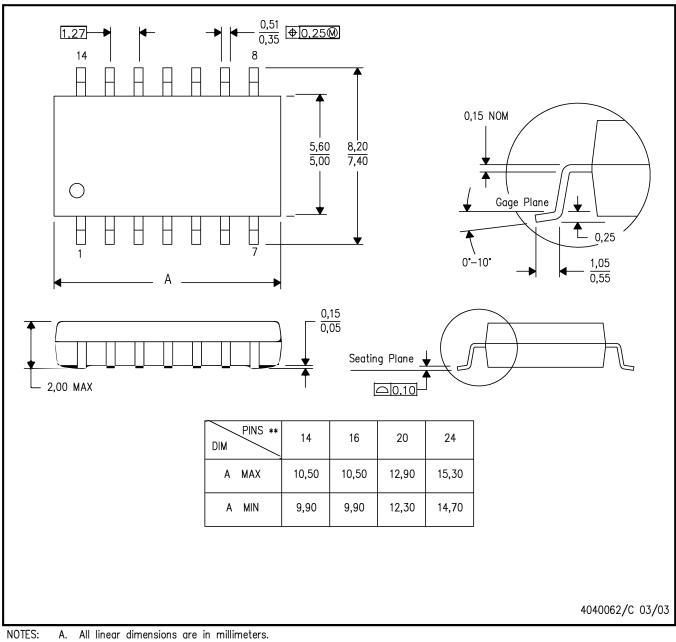
PW0016A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)


9. Board assembly site may have different recommendations for stencil design.

^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

NS (R-PDSO-G**) 14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.