

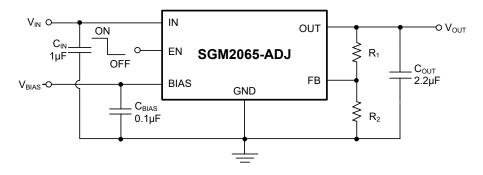
SGM2065 1A, Low Noise, Ultra-Low Dropout Bias Rail CMOS Voltage Regulator

GENERAL DESCRIPTION

The SGM2065 is a low noise, low dropout voltage linear regulator which is designed using CMOS technology. It provides 1A output current capability. The operating input voltage range is from 0.8V to 5.5V and bias supply voltage range is from 2.8V to 5.5V. The output voltage range is from 0.8V to 3.5V.

Other features include logic-controlled shutdown mode, short-circuit current limit and thermal shutdown protection. The SGM2065 has automatic discharge function to quickly discharge V_{OUT} in the disabled status.

The SGM2065 is available in a Green XTDFN-1.2×1.2-6L package. It operates over an operating temperature range of -40°C to +125°C.


APPLICATIONS

Portable Equipment Smartphone Industrial and medical Equipment

FEATURES

- 1A Nominal Output Current
- Input Voltage Range: 0.8V to 5.5V
- Bias Voltage Range: 2.8V to 5.5V
- Adjustable Output Voltage Range: 0.8V to 3.5V
- Low Dropout Voltage: 240mV (TYP) at 1A
- Low Bias Input Current: 37µA (TYP)
- Very Low Bias Input Current in Shutdown: 0.01µA (TYP)
- Low Noise: 25μV_{RMS} (TYP)
- Output Current Limit
- Thermal Shutdown Protection
- Fast Load Transient Response
- Logic Level Enable Input for ON/OFF Control
- -40°C to +125°C Operating Temperature Range
- Available in a Green XTDFN-1.2×1.2-6L Package

TYPICAL APPLICATION

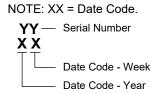


Figure 1. Typical Application Circuit

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM2065-ADJ	XTDFN-1.2×1.2-6L	-40°C to +125°C	SGM2065-ADJXXED6G/TR	3H XX	Tape and Reel, 5000

MARKING INFORMATION

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

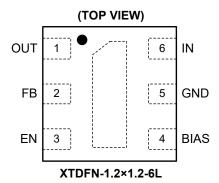
IN, BIAS, EN to GND	0.3V to 6V
OUT, FB to GND	$-0.3V$ to Min($V_{IN} + 0.3V, 6V$)
Package Thermal Resistance	
XTDFN-1.2×1.2-6L, θ _{JA}	195°C/W
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10	0s)+260°C
ESD Susceptibility	
HBM	8000V
CDM	1000V

RECOMMENDED OPERATING CONDITIONS

Operating Input Voltage Range, V _{IN}	0.8V to 5.5V
Operating Bias Voltage Range, V _{BIAS}	2.8V to 5.5V
BIAS Effective Capacitance, C _{BIAS}	0.1µF (MIN)
Input Effective Capacitance, C _{IN}	0.5µF (MIN)
Output Effective Capacitance, C _{OUT}	1μF to 10μF
Operating Junction Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.


ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	OUT	Regulated Output Voltage Pin. It is recommended to use output capacitor with effective capacitance in the range of $1\mu F$ to $10\mu F$.
2	FB	Feedback Pin. Connect this pin to the external resistor divider to adjust the output voltage. Place the resistors as close as possible to this pin.
3	EN	Enable Pin. Driving EN high to turn on the regulator. Driving EN low to turn off the regulator. The EN pin has an internal pull-down resistance which ensures that the device is turned off when the EN pin is floated.
4	BIAS	Bias Voltage Supply Pin for Internal Control Circuits. This pin is monitored by internal under-voltage lockout circuit.
5	GND	Ground.
6	IN	Input Voltage Supply Pin.
Exposed Pad	_	Exposed Pad. Exposed pad is internally connected to GND. Connect it to a large ground plane to maximize thermal performance; not intended as an electrical connection point.

ELECTRICAL CHARACTERISTICS

 $(V_{BIAS} = 2.8V \text{ or } (V_{OUT(NOM)} + 2V) \text{ (whichever is greater)}, V_{EN} = V_{BIAS}, V_{IN} = V_{OUT(NOM)} + 0.5V, I_{OUT} = 1 \text{mA}, C_{IN} = 1 \mu\text{F}, C_{BIAS} = 0.1 \mu\text{F}, C_{OUT} = 2.2 \mu\text{F}, T_J = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}, \text{ typical values are at } T_J = +25 ^{\circ}\text{C}, \text{ unless otherwise noted.)}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS		
Operating Input Voltage Range	V _{IN}		V _{OUT(NOM)} + V _{DROP_IN}		5.5	٧		
Operating Bias Voltage Range	V _{BIAS}		2.8		5.5	V		
Under Voltage Leekeut Threeholde	W	V _{BIAS} rising	1.6					
Under-voltage Lockout Thresholds	V _{UVLO}	Hysteresis		0.2		v		
Feedback Voltage	V_{FB}	$V_{OUT} = V_{FB}$, $I_{OUT} = 1$ mA to 1000mA		0.8		V		
V _{IN} Line Regulation	$\frac{\Delta V_{\text{OUT}}}{\Delta V_{\text{IN}} \times V_{\text{OUT}}}$	$V_{IN} = (V_{OUT(NOM)} + 0.5V)$ to 5.5V		0.002		%/V		
V _{BIAS} Line Regulation	$\frac{\Delta V_{\text{OUT}}}{\Delta V_{\text{BIAS}} \times V_{\text{OUT}}}$	$V_{BIAS} = 2.8V \text{ to } 5.5V, V_{OUT(NOM)} = 0.8V$		0.002		%/V		
Load Regulation	ΔV_{OUT}	$I_{OUT} = 1$ mA to 1000mA, $V_{OUT(NOM)} = 0.8$ V		0.5		mV		
		I _{OUT} = 150mA		35				
nder-Voltage Lockout Thresholds eedback Voltage IN Line Regulation BIAS Line Regulation Dad Regulation Dropout Voltage (1) BIAS Dropout Voltage (1) Drutput Current Limit Hort-Circuit Current Limit B Pin Input Current IAS Pin Operating Current IAS Pin Disable Current IAS Pin Disable Current IAS Pin Disable Current IN Pin Threshold Voltage IN Pin Pull-Down Resistance IN Power Supply Rejection Ratio BIAS Power Supply Rejection Ratio BIAS Power Supply Rejection Ratio	V_{DROP_IN}	I _{OUT} = 500mA		120		mV		
		I _{OUT} = 1000mA		240				
V Propout Voltage (1, 2)	V	I _{OUT} = 500mA		1.2		V		
VBIAS DIOPOUT VOITage	V _{DROP_BIAS}	I _{OUT} = 1000mA		1.5				
Output Current Limit	I _{LIM}			1.3		Α		
Short-Circuit Current Limit	I _{SHORT}	V _{OUT} = 0V		0.4		Α		
FB Pin Input Current	I _{FB}		-100		100	nA		
BIAS Pin Operating Current	I _{BIAS}	V _{BIAS} = 5.5V		37	58	μA		
	I _{DIS_IN}	V _{EN} = 0V, T _J = +25°C		0.1	1.2	μА		
IN Pin Disable Current		V _{EN} = 0V, T _J = -40°C to +125°C			2			
DIAC Dia Disable Comment		V _{EN} = 0V, T _J = +25°C		0.01	1			
V _{IN} Line Regulation V _{BIAS} Line Regulation Load Regulation V _{IN} Dropout Voltage (1) V _{BIAS} Dropout Voltage (1, 2) Dutput Current Limit Short-Circuit Current Limit FB Pin Input Current BIAS Pin Operating Current N Pin Disable Current EN Pin Threshold Voltage EN Pin Pull-Down Resistance Furn-On Time V _{IN} Power Supply Rejection Ratio Dutput Voltage Noise Dutput Discharge Resistance Thermal Shutdown Temperature	I _{DIS_BIAS}	V _{EN} = 0V, T _J = -40°C to +125°C			2.8	μA		
EN Die Theorie III Volte	V _{IH}	EN input voltage high	1.2			V		
EN Pin Threshold Voltage	V _{IL}	EN input voltage low			0.25	V		
EN Pin Pull-Down Resistance	R _{EN}		270	580	880	kΩ		
Turn-On Time	t _{on}	From assertion of V _{EN} to V _{OUT} = 90%V _{OUT(NOM)}		100		μs		
V _{IN} Power Supply Rejection Ratio	PSRR	V_{IN} to V_{OUT} , $f = 1kHz$, $V_{OUT(NOM)} = 1.0V$, $I_{OUT} = 150mA$, $V_{IN} \ge 1.5V$		71		dB		
V _{BIAS} Power Supply Rejection Ratio	POKK	V_{BIAS} to V_{OUT} , $f = 1kHz$, $V_{OUT(NOM)} = 1.0V$, $I_{OUT} = 150mA$, $V_{IN} \ge 1.5V$		76		QD.		
Output Voltage Noise	e _n	$V_{IN} = V_{OUT(NOM)} + 0.5V,$ $V_{OUT(NOM)} = 1.0V, f = 10Hz \text{ to } 100kHz$		25		μV _{RMS}		
Output Discharge Resistance	R _{DIS}	V _{EN} = 0V, V _{OUT} = 0.5V	50	120	220	Ω		
Thermal Shutdown Temperature	T _{SHDN}			160		°C		
Thermal Shutdown Hysteresis	ΔT_{SHDN}			20		°C		

NOTES:

- 1. Dropout voltage is characterized when V_{OUT} falls 5% below $V_{\text{OUT}(\text{NOM})}$.
- 2. For output voltages below 1.3V, V_{BIAS} dropout voltage does not apply due to a minimum bias operating voltage of 2.8V.

FUNCTIONAL BLOCK DIAGRAM

APPLICATION INFORMATION

The SGM2065 is a low noise, fast transient response high performance LDO, it consumes only $37\mu A$ (TYP) quiescent current and provides 1A output current. The SGM2065 provides the protection function for output overload, output short-circuit condition and overheating.

The SGM2065 is suitable for application which has noise sensitive circuit such as battery-powered equipment and smartphones.

Input Capacitor Selection (C_{IN})

The input decoupling capacitor is necessary to be connected as close as possible to the IN pin for ensuring the device stability. $1\mu F$ or greater X7R or X5R ceramic capacitor is selected to get good dynamic performance.

When V_{IN} is required to provide large current instantaneously, a large effective input capacitor is required. Multiple input capacitors can limit the input tracking inductance. Adding more input capacitors is available to restrict the ringing and to keep it below the device absolute maximum ratings.

Output Capacitor Selection (Cout)

The output decoupling capacitor should be located as close as possible to the OUT pin. 2.2µF or greater X7R or X5R ceramic capacitor is selected to get good dynamic performance. The minimum effective capacitance of C_{OUT} that SGM2065 can remain stable is 1µF. For ceramic capacitor, temperature, DC bias and package size will change the effective capacitance, so enough margin of C_{OUT} must be considered in design. Larger capacitance and lower ESR C_{OUT} will help improve the load transient response and increase the high frequency PSRR.

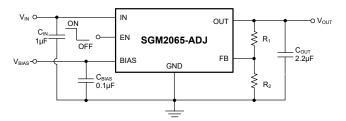
Enable Operation

The SGM2065 uses the EN pin to enable/disable the device and to deactivate/activate the output automatic discharge function.

When the EN pin voltage is lower than 0.25V, the device is in shutdown state, there is no current flowing from IN to OUT pins. In this state, the automatic discharge transistor is active to discharge the output voltage through a $120\Omega\,(TYP)$ resistor.

When the EN pin voltage is higher than 1.2V, the device is in active state, the input voltage is regulated to the

output voltage and the automatic discharge transistor is turned off.


Adjustable Regulator

The output voltage of the SGM2065 can be adjusted from 0.8V to 3.5V. The FB pin will be connected with two external resistors as shown in Figure 3, the output voltage is determined by the following equation:

$$V_{OUT} = V_{FB} \times \left(1 + \frac{R_1}{R_2}\right)$$
 (1)

where:

 V_{OUT} is output voltage and V_{FB} is the internal voltage reference, V_{FB} = 0.8V. Choose R_2 = 40k Ω to maintain a 20 μ A minimum load.

Dropout Voltage

The SGM2065 specifies two dropout voltages because there are two power supplies V_{IN} and V_{BIAS} and one V_{OUT} regulator output. V_{IN} dropout voltage is defined as the difference between V_{IN} and V_{OUT} when V_{OUT} falls 5% below $V_{\text{OUT}(\text{NOM})}$. When the output voltage is lower than 1.3V, V_{BIAS} dropout voltage does is not applicable because the minimum bias operating voltage is 2.8V.

When V_{OUT} begins to decrease and V_{BIAS} is high enough, the V_{IN} dropout voltage equals to V_{IN} - V_{OUT} . V_{BIAS} dropout voltage refers to V_{BIAS} - V_{OUT} when the IN and BIAS pins are connected together and V_{OUT} begins to decrease.

Output Current Limit and Short-Circuit Protection

When overload events happen, the output current is internally limited to 1.3A (TYP). When the OUT pin is shorted to ground, the short-circuit protection will limit the output current to 0.4A (TYP).

APPLICATION INFORMATION (continued)

Thermal Shutdown

The SGM2065 can detect the temperature of die. When the die temperature exceeds the threshold value of thermal shutdown, the SGM2065 will be in shutdown state and it will remain in this state until the die temperature decreases to +140°C.

Power Dissipation (P_D)

Thermal protection limits power dissipation in the SGM2065. When power dissipation on pass element ($P_D = (V_{IN} - V_{OUT}) \times I_{OUT}$) is too much that raise the operation junction temperature exceeds +160°C, the OTP circuit starts the thermal shutdown function and turns the pass element off. The power dissipation needs to be less than 1.5W when thermal protection occurs.

Therefore, thermal analysis for the chosen application is important to guarantee reliable performance over all conditions. To guarantee reliable operation, the junction temperature of the SGM2065 must not exceed 125°C.

The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be approximated using the following formula:

$$P_{D(MAX)} = (T_{J(MAX)} - T_A) / \theta_{JA}$$
 (2)

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction -to-ambient thermal resistance.

Negatively Biased Output

When the output is negative voltage, the chip may not start-up due to parasitic effects. Ensure that the output is greater than -0.3V under all conditions. The load is too high can make $V_{\text{OUT}} <$ -0.3V, a Schottky diode can be added between the OUT pin and GND pin.

Reverse Current Protection

The NMOS power transistor has an inherent body diode, this body diode will be forward biased when $V_{OUT} > V_{IN}$. When $V_{OUT} > V_{IN}$, the reverse current flowing from the OUT pin to the IN pin will damage the SGM2065. If $V_{OUT} > (V_{IN} + 0.3V)$ is expected in the application, one external Schottky diode will be added between the OUT pin and IN pin to protect the SGM2065.

TYPICAL APPLICATION CIRCUIT

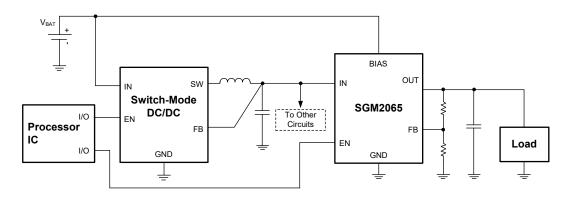
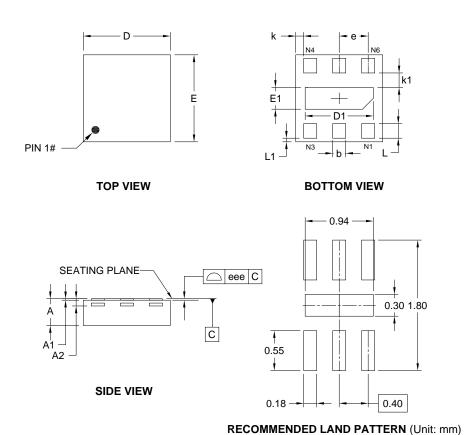
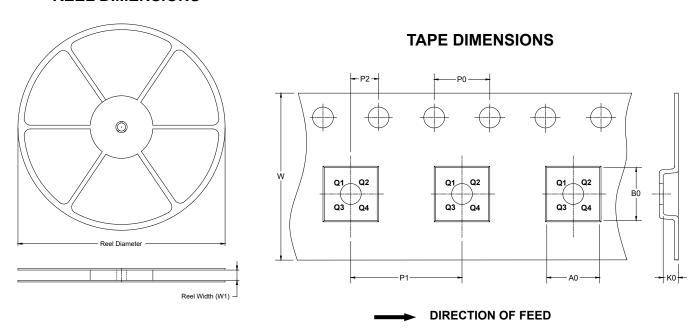



Figure 4. Used as DC/DC Post Regulator

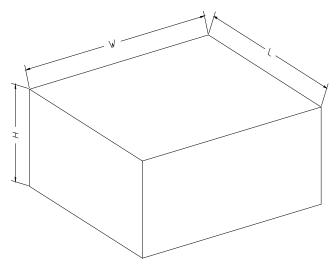
PACKAGE OUTLINE DIMENSIONS XTDFN-1.2×1.2-6L


Compleal	Dimensions In Millimeters						
Symbol	MIN	MOD	MAX				
А	0.340	0.370	0.400				
A1	0.000	-	0.050				
A2		0.100 REF					
b	0.130	0.180	0.230				
D	1.100	1.200	1.300				
Е	1.100	1.200	1.300				
D1	0.890 0.940		0.990				
E1	0.250 0.300		0.350				
е	0.300 0.400		0.500				
k	0.110 REF						
k1	0.150	0.150 0.200					
L	0.150	0.200	0.250				
L1	0.000	0.000 0.050					
eee	0.080						

NOTE: This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
XTDFN-1.2×1.2-6L	7"	9.5	1.37	1.37	0.55	4.0	4.0	2.0	8.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
7" (Option)	368	227	224	8	
7"	442	410	224	18	70000