2A Ultra-Small Controlled Load Switch with Auto-Discharge Path

The NCP334 and NCP335 are low Ron MOSFET controlled by external logic pin, allowing optimization of battery life, and portable device autonomy.

Indeed, due to a current consumption optimization with PMOS structure, leakage currents are eliminated by isolating connected IC's on the battery when not used.

Output discharge path is also embedded to eliminate residual voltages on the output rail in the NCP335.

Proposed in wide input voltage range from 1.2 V to 5.5 V, and a very small 0.96 x 0.96 mm WLCSP4, 0.5 mm pitch.

Features

- 1.2 V 5.5 V Operating Range
- 47 m Ω P MOSFET at 3.3 V
- DC Current Up to 2 A
- Output Auto-discharge (NCP335)
- Active high EN pin
- WLCSP4 0.96 x 0.96 mm
- ESD Ratings: 4 kV Human Body Model, 2 kV CDM,
- 250 V Machine Model
- These are Pb–Free Devices

Typical Applications

- Mobile Phones
- Tablets
- Digital Cameras
- GPS
- Portable Devices

(Top View)

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 9 of this data sheet.

PIN FUNCTION DESCRIPTION

Pin Name	Pin Number	Туре	Description
IN	A2	POWER	Load–switch input voltage; connect a 1 μF or greater ceramic capacitor from IN to GND as close as possible to the IC.
GND	B1	POWER	Ground connection.
EN	B2	INPUT	Enable input, logic high turns on power switch.
OUT	A1	OUTPUT	Load–switch output; connect a 1 μF ceramic capacitor from OUT to GND as close as possible to the IC is recommended.

BLOCK DIAGRAM

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
IN, OUT, EN, Pins	V _{EN} , V _{IN,} V _{OUT}	0.3 to + 7.0	V
From IN to OUT Pins: Input/Output	V _{IN,} V _{OUT}	0 to + 7.0	V
Maximum Junction Temperature	TJ	-40 to + 125	°C
Storage Temperature Range	T _{STG}	-40 to + 150	°C
Human Body Model (HBM) ESD Rating are (Notes 1 and 2)	ESD HBM	4000	V
Machine Model (MM) ESD Rating are (Notes 1 and 2)	ESD MM	250	V
Charge Device Model (CDM) ESD Rating are (Notes 1 and 2)	ESD CDM	2000	V
Latch-up protection (Note 3) - Pins IN, OUT, EN	LU	100	mA
Moisture Sensitivity (Note 4)	MSL	Level 1	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. According to JEDEC standard JESD22–A108.

 This device series contains ESD protection and passes the following tests: Human Body Model (HBM) ±4.0 kV per JEDEC standard: JESD22–A114 for all pins. Machine Model (MM) ±250 V per JEDEC standard: JESD22–A115 for all pins. Charge Device Model (CDM) ±2.0 kV per JEDEC standard: JESD22–C101 for all pins. 3. Latch up Current Maximum Rating: ±100 mA per JEDEC standard: JESD78 class II.

4. Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: J-STD-020.

OPERATING CONDITIONS

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{IN}	Operational Power Supply			1.2		5.5	V
V _{EN}	Enable Voltage			0		5.5	
T _A	Ambient Temperature Range			-40	25	+ 85	°C
C _{IN}	Decoupling input capacitor		1			μF	
C _{OUT}	Decoupling output capacitor			1			μF
$R_{\theta JA}$	Thermal Resistance Junction to Air	WLCSP package (Note 5)			100		°C/W
I _{OUT}	Maximum DC current					2	Α
PD	Power Dissipation Rating (Note 6)	T _A ≤ 25 °C	WLCSP package		0.5		W
		T _A = 85°C	WLCSP package		0.2		W

5. The $R_{\theta JA}$ is dependent of the PCB heat dissipation and thermal via.

6. The maximum power dissipation (PD) is given by the following formula:

$$\mathsf{P}_\mathsf{D} = \frac{\mathsf{T}_\mathsf{JMAX} - \mathsf{T}_\mathsf{A}}{\mathsf{R}_{\theta\mathsf{J}\mathsf{A}}}$$

ELECTRICAL CHARACTERISTICS Min and Max Limits apply for TA between -40°C to +85°C for VIN between 1.2 V to 5.5 V
(Unless otherwise noted). Typical values are referenced to $T_A = +25$ °C and $V_{IN} = 4$ V (Unless otherwise noted).

Symbol	Parameter	Conditions		Min	Тур	Max	Unit	
POWER SWITCH								
	Static drain-source	V _{IN} = 5.5 V	T _A = 25°C, I = 200 mA (Note 8)		38	40	mΩ	
	on-state resistance	V _{IN} = 4.2 V	T _A = 25°C, I = 200 mA		42	46		
Р		V _{IN} = 3.3 V	T _A = 25°C, I = 200 mA		47	52		
RDS(on)		V _{IN} = 1.8 V	T _A = 25°C, I = 200 mA		76	87		
			Full			100		
		V _{IN} = 1.2 V	$T_A = 25^{\circ}C, I = 200 \text{ mA}$		211	420		
R _{DIS}	Output discharge path	EN = low	V _{IN} = 3.3 V, NCP335 only		65	110	Ω	
Τ _R	Output rise time	V _{IN} = 3.6 V	$C_{LOAD} = 1 \ \mu\text{F}, \ R_{LOAD} = 25 \ \Omega$ (Note 7)		71		μs	
Τ _F	Output fall time	V _{IN} = 3.6 V	C_{LOAD} = 1 μ F, R_{LOAD} = 25 Ω (Note 7)		42		μs	
T _{on}	Gate turn on	V _{IN} = 3.6 V	Gate turn on + Output rise time		116		μs	
T _{en}	Enable time	V _{IN} = 3.6 V	From EN low to high to V _{OUT} = 10% of fully on		45		μs	
V _{IH}	High–level input voltage			0.9			V	
V _{IL}	Low-level input voltage					0.5	V	
R _{EN}	Pull down resistor				5		MΩ	

QUIESCENT CURRENT

la la		$V_{IN} = 3.3 V$, EN = low, No load		1	μΑ
١Q	Current consumption	V _{IN} = 3.3 V, EN= high, No load		1	μΑ

7. Parameters are guaranteed for C_{LOAD} and R_{LOAD} connected to the OUT pin with respect to the ground 8. Guaranteed by design and characterization, not production tested.

TIMINGS

Figure 3. Enable, Rise and fall time

TYPICAL CHARACTERISTICS

Figure 10. Quiescent Current (μ A) versus V_{IN} (V), No load.

Figure 11. Enable Time, Rise Time, and Ton Time

Figure 12. Disable Time, Fall Time and Toff Time

FUNCTIONAL DESCRIPTION

Overview

The NCP334 – NCP335 are high side P channel MOSFET power distribution switch designed to isolate ICs connected on the battery in order to save energy. The part can be turned on, with a range of battery from 1.2 V to 5.5 V.

Enable Input

Enable pin is an active high. The path is opened when EN pin is tied low (disable), forcing P MOS switch off.

The IN/OUT path is activated with a minimum of Vin of 1.2V and EN forced to high level.

Auto Discharge (NCP335 Only)

NMOS FET is placed between the output pin and GND, in order to discharge the application capacitor connected on OUT pin. The auto-discharge is activated when EN pin is set to low level (disable state).

The discharge path (Pull down NMOS) stays activated as long as EN pin is set at low level and $V_{IN} > 1.2$ V.

In order to limit the current across the internal discharge N–MOSFET, the typical value is set at 65 Ω .

Cin and Cout Capacitors

IN and OUT, 1 μ F, at least, capacitors must be placed as close as possible the part for stability improvement.

APPLICATION INFORMATION

 T_{I}

Power Dissipation

Main contributor in term of junction temperature is the power dissipation of the power MOSFET. Assuming this, the power dissipation and the junction temperature in normal mode can be calculated with the following equations:

 $P_D = R_{DS(on)} x (I_{OUT})^2$

 P_D

= Power dissipation (W)

R_{DS(on)} IOUT

= Power MOSFET on resistance (Ω)

= Output current (A)

 $T_J = P_D x R_{\theta JA} + T_A$

TJ	= Junction temperature (°C
$R_{\theta JA}$	= Package thermal resistance (

= Package thermal resistance (°C/W)

= Ambient temperature ($^{\circ}$ C) $T_{\rm A}$

PCB Recommendations

The NCP334 - NCP335 integrate an up to 2 A rated PMOS FET, and the PCB design rules must be respected to properly evacuate the heat out of the silicon. By increasing PCB area, especially around IN and OUT pins, the $R_{\theta JA}$ of the package can be decreased, allowing higher power dissipation.

Figure 13. Routing Example 1 oz, 2 Layers, 100°C/W

Figure 14. Routing Example 2 oz, 4 Layers, 60°C/W

Example of application definition.

$$T_J - T_A = R_{\theta JA} \times Pd = R_{\theta JA} \times R_{DS(on)} \times I^2$$

 $\begin{array}{l} T_J: \mbox{ Junction Temperature.} \\ T_A: \mbox{ Ambient Temperature.} \\ R_\theta = \mbox{ Thermal resistance between IC and air, through PCB.} \\ R_{DS(on)}: \mbox{ Intrinsic resistance of the IC MOSFET.} \\ I: \mbox{ load DC current.} \\ Taking into account of Rtheta obtain with: \\ 1 \mbox{ oz, } 2 \mbox{ layers: } 100^{\circ}\mbox{C/W.} \end{array}$

At 2 A, 25°C ambient temperature, $R_{DS(on)}$ 42 m Ω @ V_{IN} 4.2 V, the junction temperature will be:

$$T_{J} = T_{A} + R_{\theta} \times Pd = 25 + (0.042 \times 2^{2}) \times 100 = 41.8^{\circ}C/W$$

Taking into account of R_{θ} obtain with: 2 oz, 4 layers: 60°C/W. At 2 A, 25°C ambient temperature, $R_{DS(on)}$ 42 m Ω @ V_{IN} 4.2 V, the junction temperature will be:

$$\mathsf{T}_\mathsf{J} = \mathsf{T}_\mathsf{A} + \mathsf{R}_\theta \times \mathsf{Pd} = 25 + \left(0.042 \times 2^2\right) \times 60 = 35^\circ \mathsf{C}.$$

ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NCP334FCT2G	AD	WLCSP 0.96 x 0.96 mm (Pb-Free)	3000 / Tape & Reel
NCP335FCT2G	AA	WLCSP 0.96 x 0.96 mm (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

WLCSP4, 0.96x0.96 CASE 567FG ISSUE O

NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. COPLANARITY APPLIES TO SPHERICAL CROWNS OF SOLDER BALLS.

CROWNS OF SOLDER B				
	MILLIMETERS			
DIM	MIN MAX			
Α	0.54	0.63		
A1	0.22	0.28		
A2	0.33 REF			
b	0.29	0.34		
D	0.96 BSC			
E	0.96 BSC 0.50 BSC			
е				

RECOMMENDED **SOLDERING FOOTPRINT***

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.