

74AHCT244 Octal Buffer/Line Driver with 3-State Outputs

GENERAL DESCRIPTION

The 74AHCT244 is an octal buffer/line driver with non-inverting 3-state outputs, and it is designed for 4.5V to 5.5V V_{CC} operation.

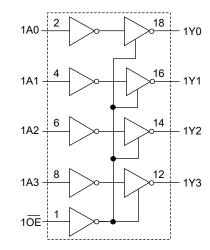
The device can be used as two 4-bit buffers or one 8-bit buffer. The $1\overline{OE}$ and $2\overline{OE}$ are two output enable inputs, and each controls four of the 3-state outputs. When $n\overline{OE}$ is set high, the outputs are in high-impedance state. When $n\overline{OE}$ is set low, data transmits from the nAn inputs to the nYn outputs.

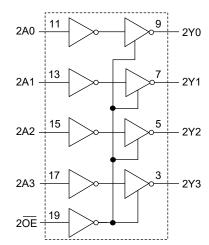
 $n\overline{OE}$ should be connected to V_{CC} by using a pull-up resistor to ensure the high-impedance state in the period of power-up or power-down, and the minimum resistance depends on the current-sinking capability of the driver.

FEATURES

- Supply Voltage Range: 4.5V to 5.5V
- Input Accept Voltages Higher than the Supply Voltage
- +8mA/-8mA Output Current
- 3-State Buffers
- -40°C to +125°C Operating Temperature Range
- Available in a Green SOIC-20 Package

FUNCTION TABLE


CONTROL INPUT	INPUT	OUTPUT
nOE	nAn	nYn
L	Н	Н
L	L	L
Н	X	Z


H = High Voltage Level

L = Low Voltage Level

Z = High-Impedance State

X = Don't Care

LOGIC DIAGRAM

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION	
74AHCT244	SOIC-20	-40°C to +125°C	74AHCT244XS20G/TR	74AHCT244XS20 XXXXX	Tape and Reel, 1500	

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

XXXXX

└── Vendor Code ──── Trace Code

Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Supply Voltage, V _{CC} 0.5V to 7V Input Voltage, V ₁ $^{(2)}$ 0.5V to 7V Output Voltage, V ₀ $^{(2)}$	
High-Impedance State	/
High-State or Low-State0.5V to MIN (7V, V _{CC} + 0.5V)
Input Clamping Current, I_{IK} (V _I < 0V)20mA	4
Output Clamping Current, I_{OK} (V _O > V _{CC} or V _O < 0V)	
±20mA	4
Output Current, I ₀	
High-State25mA	4
Low-State25mA	4
Supply Current, I _{CC}	4
Ground Current, I _{GND} 75mA	
Junction Temperature ⁽³⁾ +150°C	2
Storage Temperature Range65°C to +150°C	
Lead Temperature (Soldering, 10s)+260°C	2
ESD Susceptibility	
HBM	/
CDM	/

RECOMMENDED OPERATING CONDITIONS

Function Supply Voltage, V _{CC} 4.5V to 5.5V
Output Voltage, V _O
High-Impedance State0V to 5.5V
High-State or Low-State
High-Level Output Current, I _{OH} 8mA
Low-Level Output Current, I _{OL} 8mA
Input Transition Rise and Fall Rate, $\Delta t / \Delta V$
V _{CC} = 4.5V to 5.5V 10ns/V (MAX)
Operating Temperature Range40°C to +125°C

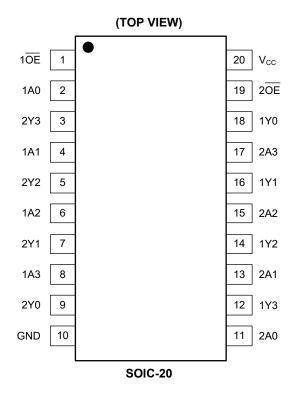
OVERSTRESS CAUTION

1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

2. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

3. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.

ESD SENSITIVITY CAUTION


This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

PIN DESCRIPTION

PINS	NAME	FUNCTION
1, 19	$1\overline{OE}, 2\overline{OE}$	Output Enable Inputs (Active Low).
2, 4, 6, 8	1A0, 1A1, 1A2, 1A3	Data Inputs.
18, 16, 14, 12	1Y0, 1Y1, 1Y2, 1Y3	Data Outputs.
10	GND	Ground.
11, 13, 15, 17	2A0, 2A1, 2A2, 2A3	Data Inputs.
9, 7, 5, 3	2Y0, 2Y1, 2Y2, 2Y3	Data Outputs.
20	Vcc	Supply Voltage.

ELECTRICAL CHARACTERISTICS

(Full = -40°C to +125°C, all typical values are measured at T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	(CONDITIONS	TEMP	MIN	TYP	MAX	UNITS	
High-Level Input Voltage	V _{IH}	V _{CC} = 4.5V to 5.5V		Full	2			V	
Low-Level Input Voltage	VIL	V _{CC} = 4.5V to 5.5V		Full			0.8	V	
Lligh Lovel Output Veltage	/oltage V _{он}		I _{OH} = -50μA	Full	4.45	4.495		v	
High-Level Output Voltage		$V_{CC} = 4.5V$	I _{OH} = -8.0mA	Full	4	4.25		v	
	N/		I _{OL} = 50μA	Full		0.005	0.05	V	
Low-Level Output Voltage	V _{OL}	$V_{CC} = 4.5V$	I _{OL} = 8.0mA	Full		0.25	0.5	v	
Off-State Output Current	I _{oz}	V _{CC} = 5.5V, V _O	$V_{CC} = 5.5V, V_0 = V_{CC} \text{ or GND}$			0.02	2	μA	
Input Leakage Current	lı –	$V_{CC} = 0V$ to 5.5	$V_{CC} = 0V$ to 5.5V, $V_1 = 5.5V$ or GND			0.02	2	μA	
Supply Current	Icc	V _{CC} = 5.5V, V _I	= V_{CC} or GND, I_0 = 0A	Full		0.02	2	μA	
Additional Supply Current	ΔI _{CC}		Per input pin at 3.4V, other pins at V_{CC} or GND, V_{CC} = 5.5V			0.05	0.5	mA	
Input Capacitance	Cı	$V_{CC} = 5V, V_I = V_{CC} \text{ or GND}$		+25°C		7		pF	
Output Capacitance	Co	V_{CC} = 5V, V_{O} =	V _{CC} or GND	+25°C		5		pF	

DYNAMIC CHARACTERISTICS

(For test circuit see Figure 1. Full = -40°C to +125°C, all typical values are measured at V_{CC} = 5V ± 0.5V and T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	COND	ITIONS	TEMP	MIN ⁽¹⁾	TYP	MAX ⁽¹⁾	UNITS
	+	nAn to nYn	C _L = 15pF	Full	0.5	3.5	8.5	
Dranagation Dalay	t _{PLH}	nan lo n m	C _L = 50pF	Full	1	4.5	9.5	
Propagation Delay	+	nAn to nYn	C _L = 15pF	Full	1	5	8.5	ns
	t _{PHL}	nan lo n m	C _L = 50pF	Full	1	5.5	9.5	
			C _L = 15pF	Full	1	6	12	
Enable Time	t _{PZH}		C _L = 50pF	Full	1	7	13	
			C _L = 15pF	Full	1	5.5	12	ns
	t _{PZL}	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	6.5	13			
	+		C _L = 15pF	Full	0.5	5	10	
Disable Time	t _{PHZ}		C _L = 50pF	Full	0.5	8	13	
			C _L = 15pF	Full	0.5	4	10	ns
	t _{PLZ} nOE	nOE to nYn	C _L = 50pF	Full	0.5	7	13]
Power Dissipation Capacitance ⁽²⁾	C _{PD}	No load, f = 1N	1Hz	+25°C		13		pF

NOTES:

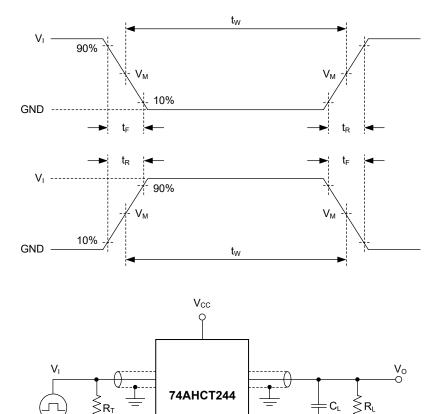
- 1. Specified by design and characterization, not production tested.
- 2. C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o})$

where:

- f_i = Input frequency in MHz.
- f_o = Output frequency in MHz.

 C_L = Output load capacitance in pF.


 V_{CC} = Supply voltage in Volts.

N = Number of inputs switching.

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = Sum of the outputs.

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions for test circuit:

RL: Load resistance.

C_L: Load capacitance (includes jig and probe).

 R_T : Termination resistance (equals to output impedance Z_0 of the pulse generator).

V_{EXT}: External voltage used to measure switching time.

Figure 1. Test Circuit for Measuring Switching Times

1

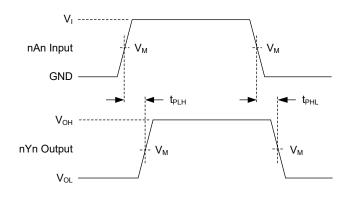
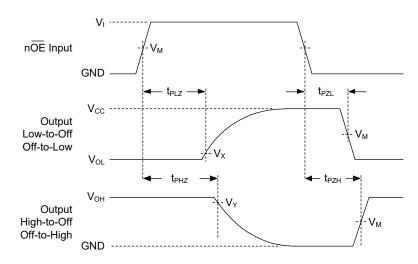

о V_{EXT}

Table 1. Test Conditions

SUPPLY VOLTAGE	INF	TUY	LOAD		V _{EXT}			
Vcc	Vı	t _R , t _F	C _L R _L		tplh, tphl tplz, tpzl		t _{PHZ} , t _{PZH}	
4.5V to 5.5V	V _{CC}	≤ 3ns	15pF, 50pF	1kΩ	Open	V _{CC}	GND	

WAVEFORMS



Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Test conditions are given in Table 1. Measurement points are given in Table 2. Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 3. Enable and Disable Times

Table 2. Measurement Points

SUPPLY VOLTAGE	INF	TUT	OUTPUT				
V _{cc}	V _I V _M ⁽¹⁾		V _M	Vx	V _Y		
4.5V to 5.5V	V _{CC}	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$	V _{OL} + 0.3V	V _{ОН} - 0.3V		

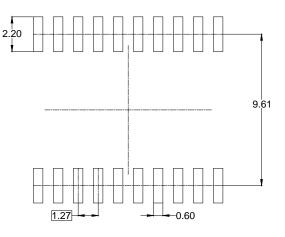
NOTE:

1. The measurement points should be V_{IH} or V_{IL} when the input rising or falling time exceeds 3ns.

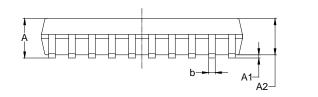
Page

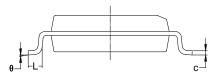
REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


Changes from Original (OCTOBER 2022) to REV.A

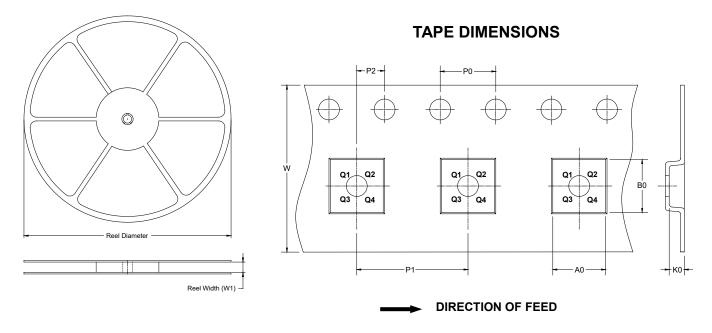
nanged from product preview to production dataAll




PACKAGE OUTLINE DIMENSIONS SOIC-20

RECOMMENDED LAND PATTERN (Unit: mm)

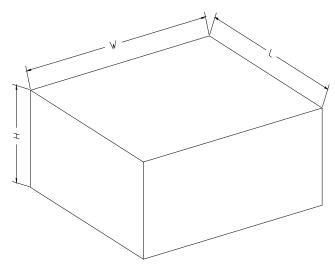
Symbol	-	nsions meters	Dimensions In Inches		
	MIN	MIN MAX		MAX	
A	2.350	2.650	0.093	0.104	
A1	0.100	0.300	0.300 0.004		
A2	2.100	2.500	0.083	0.098	
b	0.330	0.510	0.013	0.020	
С	0.204	0.330	0.008	0.013	
D	12.520	13.000	0.493	0.512	
E	7.400	7.600	0.291	0.299	
E1	10.210	10.610	0.402	0.418	
е	1.27	BSC	0.050	BSC	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	


NOTES:

Body dimensions do not include mode flash or protrusion.
This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOIC-20	13"	24.4	10.90	13.30	3.00	4.0	12.0	2.0	24.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
13″	386	280	370	5	DD0002

