

SGM2593D Power Distribution Switch

GENERAL DESCRIPTION

The SGM2593D is a single channel power distribution switch. The switch controlled by the EN pin operates from 2.5V to 6V supply voltage. It can be used in USB power distribution applications.

The SGM2593D integrates programmable current limit to protect the upstream power supply from damage during over-current or short-circuit condition.

The device has the function of over-temperature protection. When the junction temperature exceeds $+151^{\circ}$ C, the device will be turned off and the internal MOSFET will remain off until the temperature drops to $+105^{\circ}$ C. In current limit mode, the over-temperature protection will shut down the output if the maintaining time of over-current state is long enough to cause the junction temperature exceeds $+128^{\circ}$ C. The internal switch will not be turned on until the temperature drops below $+105^{\circ}$ C.

The device is designed with soft-start circuit to cope with inrush currents when large capacitive loads are connected. The nFAULT output will be asserted to low level during over-current, over-temperature or reverse voltage condition.

The SGM2593D further reduces the total solution size by integrating a 47Ω pull-down resistor for output discharge when the switch is shut down by EN.

The SGM2593D is available in a Green TDFN-2×2-6AL package.

FEATURES

- High-side N-MOSFET
- On-Resistance: 60mΩ (TYP)
- Programmable Current Limit Range: 0.1A to 3A
 1.5A at R_{ILIM} = 4.53kΩ
- Input Voltage Range: 2.5V to 6V
- Quiescent Current: 27µA (TYP)
- Shutdown Current: 0.28µA (TYP)
- Soft-Start Function
- Over-Temperature Protection
- Under-Voltage Lockout Protection for VIN
- No Reversed Leakage Current (Reverse Blocking)
- Fault Flag (nFAULT Pin)
- Quick Output Discharge
- 1.2MΩ Pull-Down Resistor at EN Pin
- Available in a Green TDFN-2×2-6AL Package

APPLICATIONS

General Purpose Power Switching USB Bus/Self-Powered Hub USB Peripheral ACPI Power Distribution Smart Phone LCD TV

TYPICAL APPLICATION

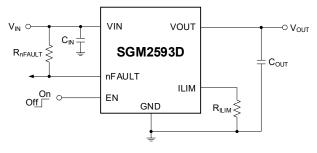


Figure 1. Typical Application Circuit

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM2593D	TDFN-2×2-6AL	-40°C to +125°C	SGM2593DXTDI6G/TR	05O XXXX	Tape and Reel, 3000

MARKING INFORMATION

NOTE: XXXX = Date Code, Trace Code and Vendor Code.

TDFN-2×2-6AL

YYY— Serial Number XXXXX Vendor Code Trace Code

Trace Code
Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

VIN	6.5V
All Other Pins	6V
nFAULT Current	25mA
Package Thermal Resistance	
TDFN-2×2-6AL, θ _{JA}	83°C/W
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
НВМ	2000V
CDM	1000V

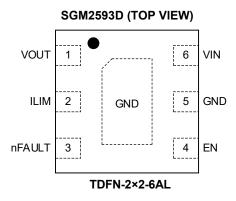
RECOMMENDED OPERATING CONDITIONS

Input Voltage Range	2.5V to 6V
EN Voltage Range	0.3V to 5.5V
All Other Pins	0V to 5.5V
Operating Junction Temperature Range	e40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION


This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

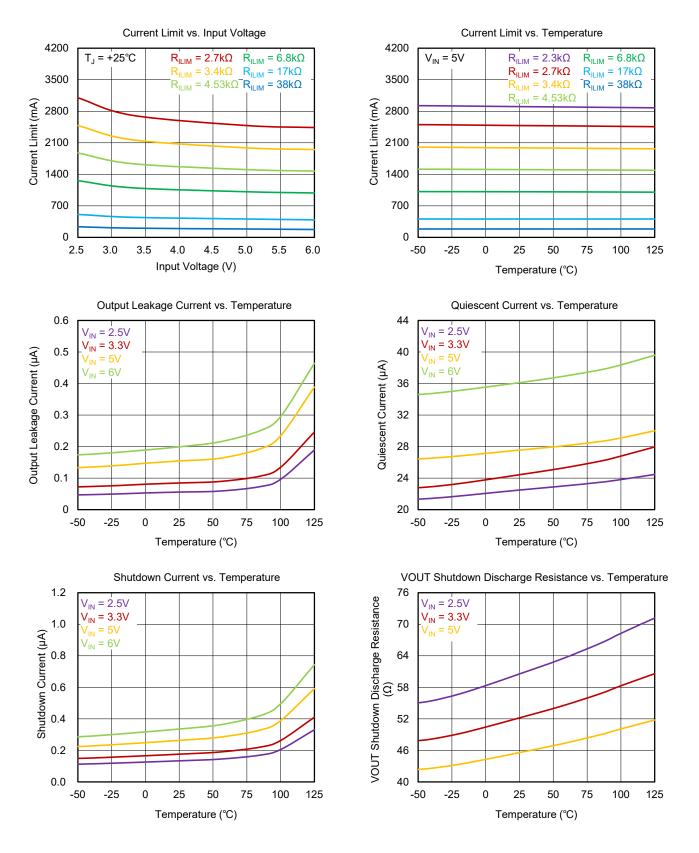
SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

PIN DESCRIPTION

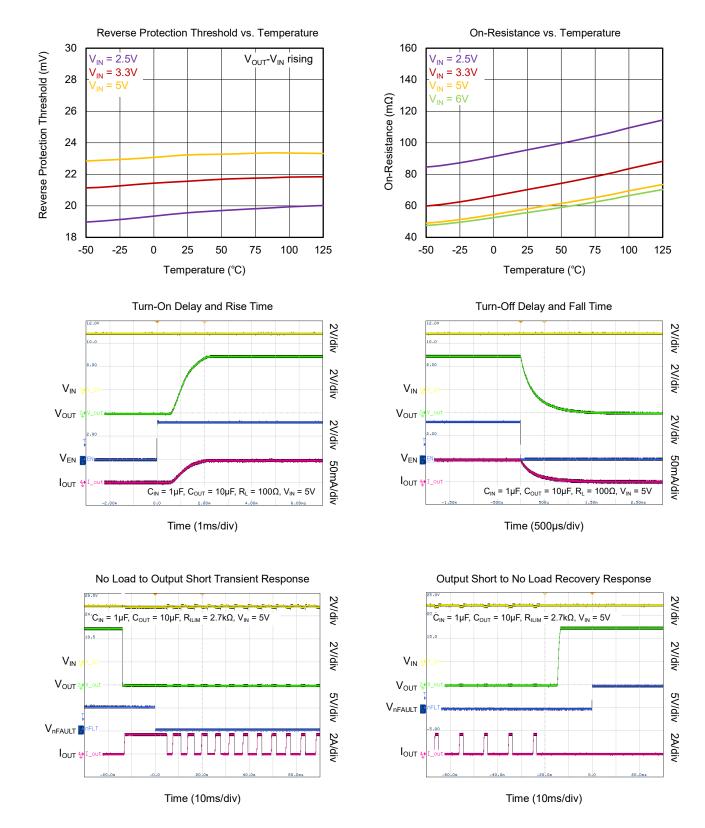
PIN	NAME	FUNCTION				
1	VOUT	Output Voltage.				
2	ILIM	Current Limit Programming Pin. Connect a resistor R_{ILIM} from this pin to GND to set the overload current limit threshold: $I_{LIM} = \frac{6612}{R_{ILIM}^{0.982}}$ (A) If the ILIM pin is connected to GND directly, the current limit function is not available.				
3	nFAULT	Active-Low Open-Drain Output. It is asserted during over-current, over-temperature or reverse voltage condition.				
4	EN	ip Enable. Active-high for SGM2593D. It has integrated a 1.2M Ω pull-down resistor at this n.				
5	GND	Ground.				
6	VIN	Power Input Voltage.				
Exposed Pad	GND	Device Ground. The exposed pad must be connected to ground.				

ELECTRICAL CHARACTERISTICS


(T_J = -40°C to +125°C, typical values are at T_J = +25°C, V_{IN} = 5V, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS		
Input Voltage Range	V _{IN}		2.5		6	V		
	V _{UVLO}	V _{IN} rising		2.23	2.4	V		
Under-Voltage Lockout Threshold	V _{UVLO_HYS}	V _{IN} falling		96		mV		
Quiescent Current	Ι _Q	Switch on, V _{OUT} = Open		27	55	μA		
Shutdown Current	I _{SD}	Switch off, V _{OUT} = Open		0.28	1.6	μA		
Output Leakage Current	I _{leakage}	Switch off, $V_{OUT} = 6V$, $V_{IN} = 0V$, $T_J = -40^{\circ}C$ to $+125^{\circ}C$ Switch off, $V_{OUT} = 6V$, $V_{IN} = 0V$, $T_J = -40^{\circ}C$ to $+85^{\circ}C$		0.21 0.21	10 1.5	μA		
En alda Jamant Thursda ald	VIH	н 1.2						
Enable Input Threshold	VIL				0.4	V		
Pull-Down Resistor at EN Pin	R _{PULL_DOWN}			1.2		MΩ		
On-Resistance	R _{DSON}	I _{OUT} = 200mA		60	100	mΩ		
Output Turn-On Delay Time	t _{on}	R _L = 100Ω, C _{OUT} = 0.1μF		1.13		ms		
Output Turn-Off Delay Time	t _{OFF}	$R_{L} = 100\Omega, C_{OUT} = 0.1 \mu F$		37		μs		
Output Turn-On Rise Time	t _R	R _L = 100Ω, C _{OUT} = 0.1μF		1.4		ms		
Output Turn-Off Fall Time	t⊧	R _L = 100Ω, C _{OUT} = 0.1μF		25		μs		
Over-Current nFAULT Response Delay Time	t _D	Force the chip into current limit mode		14		ms		
Reverse nFAULT Response Delay Time	t _{D_REV}			3		ms		
Current Limit Threshold	ILIM	$\begin{split} & R_{ILIM} = 38 k \Omega, T_J = -40^\circ C \; \; to \; +125^\circ C \\ & R_{ILIM} = 38 k \Omega, \; T_J = +25^\circ C \\ & R_{ILIM} = 17 k \Omega, \; T_J = -40^\circ C \; \; to \; +125^\circ C \\ & R_{ILIM} = 17 k \Omega, \; T_J = +25^\circ C \\ & R_{ILIM} = 6.8 k \Omega, \; T_J = -40^\circ C \; \; to \; +125^\circ C \\ & R_{ILIM} = 6.8 k \Omega, \; T_J = +25^\circ C \\ & R_{ILIM} = 4.53 k \Omega, \; T_J = -40^\circ C \; \; to \; +125^\circ C \\ & R_{ILIM} = 4.53 k \Omega, \; T_J = -40^\circ C \; \; to \; +125^\circ C \\ & R_{ILIM} = 3.4 k \Omega, \; T_J = -40^\circ C \; \; to \; +125^\circ C \\ & R_{ILIM} = 3.4 k \Omega, \; T_J = +25^\circ C \\ & R_{ILIM} = 2.7 k \Omega, \; T_J = -40^\circ C \; \; to \; +125^\circ C \\ & R_{ILIM} = 2.7 k \Omega, \; T_J = +25^\circ C \\ & R_{ILIM} = 2.7 k \Omega, \; T_J = +25^\circ C \\ & R_{ILIM} = 2.7 k \Omega, \; T_J = -40^\circ C \; \; to \; +125^\circ C \\ & R_{ILIM} = 2.7 k \Omega, \; T_J = -40^\circ C \; \; to \; +125^\circ C \\ & R_{ILIM} = 2.7 k \Omega, \; T_J = -40^\circ C \; \; to \; +125^\circ C \\ & R_{ILIM} = 2.3 k \Omega, \; T_J = -40^\circ C \; \; to \; +125^\circ C \\ & R_{ILIM} = 2.3 k \Omega, \; T_J = -40^\circ C \; \; to \; +125^\circ C \\ & R_{ILIM} = 2.3 k \Omega, \; T_J = -40^\circ C \; \; to \; +125^\circ C \\ & R_{ILIM} = 2.3 K \Omega, \; T_J = -40^\circ C \; \; to \; +125^\circ C \\ & R_{ILIM} = 2.3 K \Omega, \; T_J = -40^\circ C \; \; to \; +125^\circ C \\ & R_{ILIM = 2.3 K \Omega, \; T_J = -40^\circ C \; \; to \; +125^\circ C \\ & R_{ILIM = 2.3 K \Omega, \; T_J = -40^\circ C \; \; to \; +125^\circ C \\ & R_{ILIM = 2.3 K \Omega, \; T_J = -40^\circ C \; \; to \; +125^\circ C \\ & R_{ILIM = 2.3 K \Omega, \; T_J = -40^\circ C \; \; to \; +125^\circ C \\ & R_{ILIM = 2.3 K \Omega, \; T_J = -40^\circ C \; \; to \; +125^\circ C \\ & R_{ILIM = 2.3 R \Omega, \; R_{I \; to \; +125^\circ \mathsf$	125 135 345 915 940 1375 1412 1806 1857 2262 2325 2645	185 185 410 410 1010 1010 1500 1980 2480 2480 2890	245 235 470 460 1095 1074 1615 1588 2140 2104 2680 2637 3125	mA		
Reverse Protection Threshold	V _{REV}	$R_{ILIM} = 2.3k\Omega, T_J = +25^{\circ}C$ $V_{OUT}-V_{IN}$ rising	2712	2890 23	3077	mV		
Reverse Protection Threshold Hysteresis	V _{REV_HYS}			15		mV		
nFAULT Output Resistance	RnFAULT	nFAULT is low and I _{SINK} = 10mA		20		Ω		
nFAULT Leakage Current		nFAULT is high		0.8		nA		
VOUT Shutdown Discharge Resistance	R _{DIS}	Switch off, sink 2mA into OUT		47		Ω		
Thermal Shutdown Temperature	T _{SD}	T _J increasing		47 151		°C		
	' SD	T _J increasing, only in the current limit mode.		128		C		
Thermal Shutdown Hysteresis	T _{HYS}			46		°C		
		Only in the current limit mode.		23				

SGM2593D


TYPICAL PERFORMANCE CHARACTERISTICS

SG Micro Corp

SGM2593D

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

SG Micro Corp

FUNCTIONAL BLOCK DIAGRAM

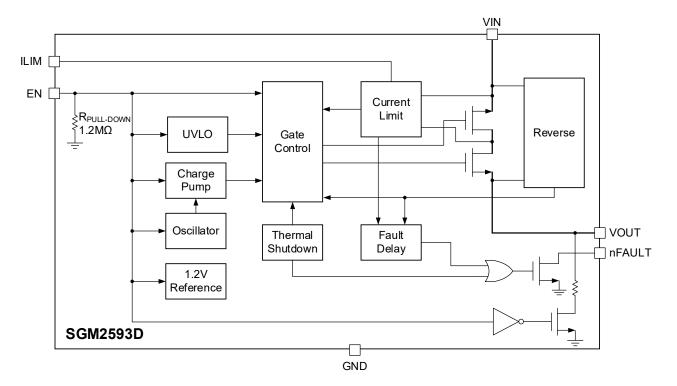


Figure 2. SGM2593D Block Diagram

TIMING DIAGRAMS

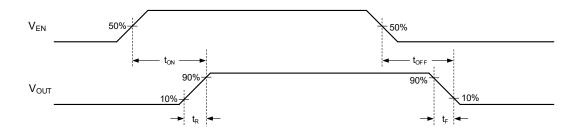
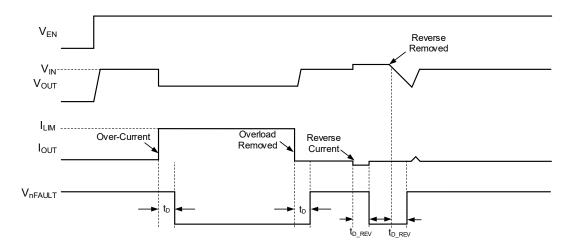



Figure 3. Switch Turn-On and Turn-Off Times

DETAILED DESCRIPTION

Input and Output

VIN should be connected to the power source that is the power supply of the internal logic circuitry and loads. Normally, load current flows from VIN to VOUT. The output MOSFET and driver circuit are designed to allow the voltage of VOUT is higher than VIN, when the device is turned off.

Thermal Shutdown (TSD)

In current limit mode, the internal switch will be shut down if the junction temperature exceeds $+128^{\circ}$ C to protect the device from the damage caused by excessive power dissipation. The switch will be turned on again once the junction temperature falls below $+105^{\circ}$ C.

If there's no over-current condition, the thermal shutdown threshold is +151°C with 46°C hysteresis.

Soft-Start

The soft-start feature is used to limit inrush current during start-up or hot-plug events so that the device can cope with inrush current when connected to large capacitive loads.

Under-Voltage Lockout (UVLO)

If the voltage on VIN pin falls below its under-voltage lockout threshold, the device will be disabled. The device resumes operation when the power supply goes back above UVLO threshold.

Current Limit and Short-Circuit Protection

The current limit protection circuit is designed to protect the upstream power supply by limiting the output current to the current limit threshold set by the R_{ILIM} from ILIM to GND.

The current limit threshold is 40% discount of I_{LIM} in short-circuit state and the nFAULT pin will be asserted after the device enters short-circuit state for t_D (14ms).

If the short-circuit state persists, the device will cycle on and off under thermal protection as a result of power dissipation.

Fault Flag (nFAULT)

The SGM2593D is designed to achieve delayed response via the internal delay "deglitch" circuit for over-current (t_D = 14ms, TYP) and reverse voltage (3ms, TYP) conditions. The nFAULT pin indicates the device enters and leaves the following fault state: over-current, reverse voltage after the delay time (t_D). But nFAULT will be asserted to low level as soon as the over-temperature condition occurs.

The nFAULT is the structure of N-MOSFET open-drain that outputs low level when an over-current, over-temperature or reverse voltage condition occurs. Figure 4 depicts the typical timing.

When an over-current occurs, nFAULT will not be asserted until the over-current persists for a delay time (t_D) . This ensures that nFAULT will not be asserted due to disturbances such as current jitter, thus avoids false fault reports.

Reverse Voltage Protection

When the output voltage exceeds the input voltage by 23mV (TYP), the device turns off the internal N-MOSFET to avoid the reverse current from the output to input. Its hysteresis voltage is 15mV (TYP).

Output Discharge

The SGM2593D integrates the output discharge feature. When the EN pin is pulled low (below V_{IL}), a discharge resistance with a typical value of 47Ω is connected between the VOUT and GND. This resistance pulls down the output and prevents it from floating when the device is disabled.

APPLICATION INFORMATION

Current Limit Programming

An external resistor (R_{ILIM}) placed between the ILIM pin and GND sets the switch current limit threshold (I_{LIM}). The ILIM pin voltage is regulated by an internal control loop. The current limit threshold is proportional to the current pulled from the ILIM pin by the resistor. Use short trace routes for the R_{ILIM} on the PCB to minimize the impact of parasitics and noise on the accuracy of the current limit setting.

$$I_{\text{LIM}} = \frac{6612}{\mathsf{R}_{\text{ILIM}}^{0.982}}$$
(1)

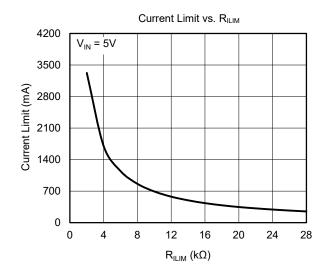


Figure 5. Current Limit Threshold (I_{LIM}) vs. Current Limit Programming Resistor (R_{ILIM})

Power Dissipation

Assuming a given ambient temperature and an output current, the maximum allowable power dissipation is calculated by:

$$\mathsf{P}_{\mathsf{D}(\mathsf{MAX})} = \frac{\mathsf{T}_{\mathsf{J}(\mathsf{MAX})} - \mathsf{T}_{\mathsf{A}}}{\boldsymbol{\theta}_{\mathsf{JA}}} \tag{2}$$

where:

- P_{D(MAX)} is the maximum power dissipation.
- T_{J(MAX)} is the maximum operating junction temperature.
- T_A is the operating ambient temperature.
- θ_{JA} is junction to air thermal impedance.

Please note that the thermal vias are placed under the exposed pad of the device, thus allowing for thermal dissipation away from the device.

Supply Filter Capacitor

It is recommended to use a 1 μ F capacitor between VIN and GND close to the device pins. It can limit the voltage drop of the input supply. Larger C_{IN} can reduce voltage dip in high current applications. Without an input capacitor, short-circuit at the output will cause the input voltage to ring, which may destroy the chip's internal circuitry when the input transient voltage exceeds the absolute maximum supply voltage (6.5V).

Output Filter Capacitor

To reduce EMI, improve the transient performance, and minimize negative effects of resistance and inductance between the bypass capacitor and the downstream connector, a low-ESR 10μ F ceramic capacitor between VOUT and GND standard bypass methods are recommended. If the output port is connected to the load through a long cable, the parasitic inductance of the cable may cause voltage to ring, whose negative ringing may damage the chip, so an anti-parallel Schottky diode such as BAT54 is recommended to connect in parallel with the output.

PCB Layout Guidelines

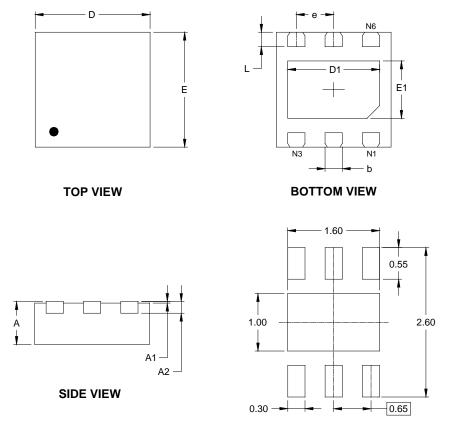
A reasonable PCB layout is critical to the stable performance of the SGM2593D. For best results, follow the guidelines below.

- Keep the power traces as short and wide as possible, and use at least 2 ounces of copper.
- Placing a ground plane under all circuits to reduce resistance and inductance will improve DC and transient performances.
- Ensure that the input decoupling capacitors on VIN have a minimal trace length to VIN and GND.
- Place the output capacitors as close to the SGM2593D as possible to minimize the affect of PCB parasitic inductance.

Page

REVISION HISTORY

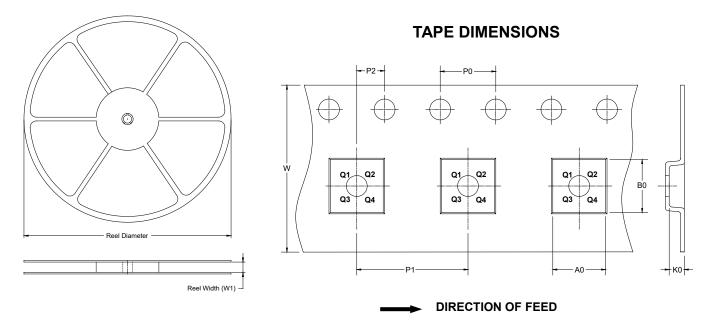
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


Changes from Original (MARCH 2023) to REV.A

	•
Changed from product preview to production dataAll	

PACKAGE OUTLINE DIMENSIONS

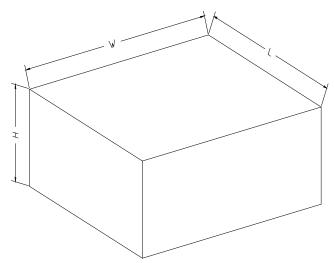
TDFN-2×2-6AL


Symbol	-	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
А	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
A2	0.203	B REF	0.008 REF		
D	1.900 2.100		0.075	0.083	
D1	1.500 1.700		0.059	0.067	
E	1.900 2.100		0.075	0.083	
E1	0.900	1.100	0.035	0.043	
b	0.250	0.350	0.010	0.014	
е	0.650 BSC		0.026	BSC	
L	0.174 0.326		0.007	0.013	

NOTE: This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TDFN-2×2-6AL	7″	9.5	2.30	2.30	1.10	4.0	4.0	2.0	8.0	Q2

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
7" (Option)	368	227	224	8	
7"	442	410	224	18	00002

