

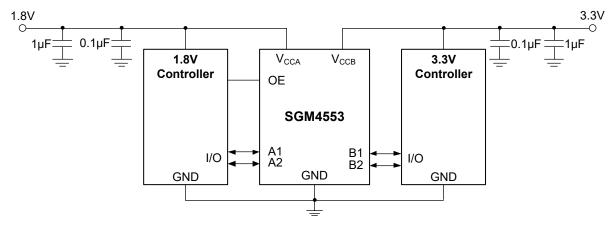
2-Bit Bidirectional Voltage-Level Translator for Open-Drain and Push-Pull Applications

GENERAL DESCRIPTION

The SGM4553 is a 2-bit, non-inverting, bidirectional voltage-level translator which features two independent configurable power-supply lines. The A and B ports track the $V_{\rm CCA}$ supply and $V_{\rm CCB}$ supply respectively. The supply voltage range is 1.65V to 5.5V for A ports and 2.3V to 5.5V for B ports. The device provides a bidirectional translation function between the different voltage nodes (including 1.8V, 2.5V, 3.3V and 5V).

The SGM4553 has an output enable (OE) function, which controls the inputs and outputs states. When OE goes low, all I/Os enter into the high-impedance state. It is beneficial for reducing quiescent current consumption. When V_{CCA} is powered, OE has an internal pull-down current source.

The SGM4553 is available in Green SOT-23-8 and XTDFN-1.4×1-8L packages. It operates over an ambient temperature range of -40°C to +85°C.


FEATURES

- Power Supply Voltage Ranges (V_{CCA} ≤ V_{CCB})
 - A Ports: 1.65V to 5.5V
 - + B Ports: 2.3V to 5.5V
- Direction-Control Signal is Not Required
- Data Rates
 - Push-Pull: 24Mbps
 - Open-Drain: 2Mbps
- Support V_{CCA} or V_{CCB} Isolation
 - When V_{CCA} or V_{CCB} is Low, Device Enters Power-Down Mode
- No Specific Power Sequences Required for V_{CCA} and V_{CCB}
- Support Power-Down Mode
- -40°C to +85°C Operating Temperature Range
- Available in Green XTDFN-1.4×1-8L and SOT-23-8 Packages

APPLICATIONS

Universal Asynchronous Receiver/Transmitter I²C/SMBus Interfaces
General Purpose I/O (GPIO)

TYPICAL APPLICATION

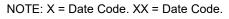
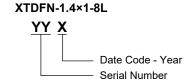


Figure 1. Typical Application Circuit


PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM4553	SOT-23-8	-40°C to +85°C	SGM4553YN8G/TR	SLDXX	Tape and Reel, 3000
361014333	XTDFN-1.4×1-8L	-40°C to +85°C	SGM4553YXDO8G/TR	N2X	Tape and Reel, 5000

MARKING INFORMATION

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Serial Number

ADOCEOTE IIII VAIIII OIII TAATII A	
Supply Voltage Range	
V _{CCA}	0.3V to 6V
V _{CCB}	0.3V to 6V
Input Voltage Range, V _I ⁽¹⁾	
A Ports, B Ports, OE	0.3V to 6V
Output Voltage Range for the High-Imped	
State, V _O ⁽¹⁾	1
State, V ₀ ('') A Ports	0.3V to 6V
B Ports	0.3V to 6V
Output Voltage Range for the High or Low	State, Vo (1)(2)
A Ports0.	
B Ports0.	3V to V _{CCB} + 0.3V
Input Clamp Current, I _{IK} (V _I < 0)	
Output Clamp Current, I _{OK} (V _O < 0)	
Continuous Output Current, Io	
Continuous Current through V _{CCA} , V _{CCB} , or	
Package Thermal Resistance @ T _A = +25°0	
SOT-23-8, θ _{JA}	
XTDFN-1.4×1-8L, θ _{JA}	248°C/W
Junction Temperature	
Storage Temperature Range	
Lead Temperature (Soldering, 10s)	
ESD Susceptibility	
HBM	4000V
MM	

NOTES:

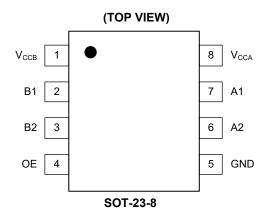
- 1. When the input and output current ratings are observed, the input and I/O negative voltage ratings may be exceeded.
- 2. V_{CCA} and V_{CCB} values are shown in the recommended operating conditions in Electrical Characteristics section.

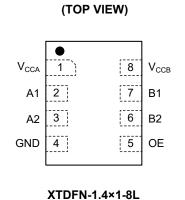
RECOMMENDED OPERATING CONDITIONS

Operating Temperature Range-40°C to +85°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.


ESD SENSITIVITY CAUTION


This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATIONS

PIN DESCRIPTION

	PIN	NAME	EUNICTION COM
SOT-23-8	SOT-23-8 XTDFN-1.4×1-8L		FUNCTION
1	8	V _{CCB}	Supply Voltage on B Ports. It can be operated from 2.3V to 5.5V.
2	7	B1	Channel 1 Input/Output B. It tracks the V _{CCB} supply.
3	6	B2	Channel 2 Input/Output B. It tracks the V _{CCB} supply.
4	田哲	OE	Output Enable Control Pin. Active high. When OE goes low, all outputs enter into the high-impedance state. It tracks the V_{CCA} supply.
5	1 4	GND	Ground.
6	3	A2	Channel 2 Input/Output A. It tracks the V _{CCA} supply.
7	2	A1	Channel 1 Input/Output A. It tracks the V _{CCA} supply.
8	1	V _{CCA}	Supply Voltage on A Ports. It can be operated from 1.65V to 5.5V, and V_{CCA} is always $\leq V_{CCB}$.

ELECTRICAL CHARACTERISTICS

 $(V_{CCA} = 1.65V \text{ to } 5.5V, V_{CCB} = 2.3V \text{ to } 5.5V, \text{Full} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ typical values are at } T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$

PARAMETER		SYMBOL	CON	DITIONS	MIN	TYP	MAX	UNITS
Recommended Op	erating Condition	ons ^{(1) (2)}	•					
		V_{CCA}			1.65		5.5	.,
Supply Voltage (3)		V _{CCB}			2.3		5.5	V
	A Port I/Os		$V_{CCA} = 1.65V \text{ to } 1.9$	95V, V _{CCB} = 2.3V to 5.5V	V _{CCI} - 0.2		V _{cci}	
High-Level Input	A Port I/Os		V _{CCA} = 2.3V to 5.5V	/, V _{CCB} = 2.3V to 5.5V	V _{CCI} - 0.4		V _{cci}	V
Voltage	B Port I/Os	V _{IH}			V _{CCI} - 0.4		V _{CCI}	V
	OE Input				V _{CCA} × 0.8		5.5	
	A Port I/Os				0		0.15	
Low-Level Input Voltage	B Port I/Os	V_{IL}			0		0.15	V
	OE Input				0		V _{CCA} × 0.25	
			A port I/Os push-pu	ıll driving			10	
Input Transition Rise or Fall Rate		Δt/ΔV B port I/Os push-pull driving				10	ns/V	
			Control input				10	
Electrical Characte	eristics							
A Ports High Level (Output Voltage	V_{OHA}	$I_{OH} = -20\mu A, V_{IB} \ge V$	/ _{CCB} - 0.4V	$V_{CCA} \times 0.7$	Ċ		
A Ports Low Level C	Output Voltage	V_{OLA}	$I_{OL} = 1mA, V_{IB} \le 0.1$	15V		,	0.4	V
B Ports High Level	Output Voltage	V_{OHB}	$I_{OH} = -20\mu A, V_{IA} \ge V$	/ _{CCA} - 0.4V	$V_{CCB} \times 0.7$	5	71	V
B Ports Low Level 0	Output Voltage	V_{OLB}	$I_{OL} = 1 \text{mA}, V_{IA} \le 0.1$	15V	1) }	0.4	
Input Leakage	OE	l ₁ _	T _A = +25°C	2	りん		±1	μA
Current	02	22/1	$T_A = -40^{\circ}C \text{ to } +85^{\circ}$	c 28 6			±1.5	μΛ
	A Ports	EV.	$V_{CCA} = 0V$,	T _A = +25°C			±0.5	
Power Off Leakage Current			$V_{CCB} = 0V \text{ to } 5.5V$	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			±1	μA
	B Ports	OFF	$V_{CCA} = 0V$ to 5.5V,	T _A = +25°C			±0.5	μΛ
10	51013	HT	V _{CCB} = 0V	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			±1	
3-State Output	A or B Ports	loz	OE = 0V	T _A = +25°C			±0.6	μA
Leakage	AOIDIOIS	loz OE	OL - 00	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			±1	μΛ

NOTES:

- 1. V_{CCI} is the supply voltage associated with the input ports.
- 2. V_{CCO} is the supply voltage associated with the output ports.
- 3. Ensure that $V_{CCA} \le V_{CCB}$ and V_{CCA} must not exceed 5.5V.

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CCA} = 1.65V \text{ to } 5.5V, V_{CCB} = 2.3V \text{ to } 5.5V, \text{Full} = -40^{\circ}\text{C}$ to +85°C, typical values are at $T_A = +25^{\circ}\text{C}$, unless otherwise noted.)

PARAME	TER	SYMBOL	CON	IDITIONS	MIN	TYP	MAX	UNITS
			$V_1 = V_0 = OPEN$	$V_{CCA} = 1.65V \text{ to } V_{CCB},$ $V_{CCB} = 2.3V \text{ to } 5.5V$			5.5	
		I _{CCA}	$I_0 = 0A$	V _{CCA} = 5.5V, V _{CCB} = 0V			5.5	μΑ
				V _{CCA} = 0V, V _{CCB} = 5.5V			-1	
			$V_1 = V_0 = OPEN$	V_{CCA} = 1.65V to V_{CCB} , V_{CCB} = 2.3V to 5.5V			15	
Quiescent Supply Cu	ırrent	I _{CCB}	$I_0 = 0A$	$V_{CCA} = 5.5V$, $V_{CCB} = 0V$			-1	μΑ
				$V_{CCA} = 0V$, $V_{CCB} = 5.5V$			6	
		I _{CCA} + I _{CCB}	$V_1 = V_0 = OPEN,$ $I_0 = 0A$	V_{CCA} = 1.65V to V_{CCB} , V_{CCB} = 2.3V to 5.5V			20	μА
		I _{CCZA}	$V_I = V_{CCI}$ or 0V, $I_O = 0A$, OE = 0V	V_{CCA} = 1.65V to V_{CCB} , V_{CCB} = 2.3V to 5.5V			5.5	μА
		I _{CCZB}	$V_I = V_{CCI}$ or 0V, $I_O = 0A$, OE = 0V	V_{CCA} = 1.65V to V_{CCB} , V_{CCB} = 2.3V to 5.5V			5.5	μΑ
OE Input Capacitanc		Cı	$V_{CCA} = 3.3V$, $V_{CCB} = 3.3V$			4		pF
Input/Output	A Ports	Cua	V - 2 2V V - 2 2V			5	\sim m_{c}	pF
Capacitance	B Ports	V _{CCA} – 3.3V, V _{CCB} – 3.3V			5			ρι
A Ports Capacitance Ca								

TIMING REQUIREMENTS

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	CONDITIONS	V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5V	LINITO	
TANAMETER STWIBUT		CONDITIONS	TYP	TYP	TYP	UNITS	
(V _{CCA} = 1.8V)	•						
		Push-pull driving	21	22	24	Mha	
Data Rate		Open-drain driving	2	2	2	Mbps	
Pulse Duration		Push-pull driving	47	45	41		
(Data Inputs)	t _W	Open-drain driving	500	500	500	ns	
(V _{CCA} = 2.5V)							
Data Rate		Push-pull driving	20	22	24	Mhna	
Dala Rale		Open-drain driving	2	2	2	Mbps	
Pulse Duration		Push-pull driving	50	45	41		
(Data Inputs)		Open-drain driving	500	500	500	ns	
(V _{CCA} = 3.3V)							
Data Rate		Push-pull driving		23	24	Mhna	
Dala Rale		Open-drain driving		2	2	Mbps	
Pulse Duration	+	Push-pull driving		43	41	ne	
(Data Inputs)	t _W	Open-drain driving	: C	500	500	ns	
(V _{CCA} = 5V)			1/12		7.10		
Data Rate		Push-pull driving	N - ,	5	24	Mhna	
Dala Kale		Open-drain driving) [2	Mbps	
Pulse Duration		Push-pull driving	28		41		
(Data Inputs)	t _w	Open-drain driving	5		500	ns	
代	里间	Open-drain driving					

SWITCHING CHARACTERISTICS

($V_{CCA} = 1.8V$, $T_A = +25$ °C, unless otherwise noted.)

DADAMETED	OVMDOL	SYMBOL CONDITIONS -		V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5V	LINUTO					
PARAMETER	SYMBOL			TYP	TYP	TYP	UNITS					
		4		Push-pull driving	2.4	3.0	4.3					
	t _{PHL}	A to B	Open-drain driving	26.0	26.3	26.7						
	4	Alob	Push-pull driving	4.0	3.6	3.5	ns					
Branagation Dalay	t _{PLH}		Open-drain driving	175	145	110						
Propagation Delay	4		Push-pull driving	2.0	1.9	2.1						
	t _{PHL}	B to A	Open-drain driving	26.0	26.1	26.2	20					
	4	D IO A	Push-pull driving	1.7	1.5	1.4	ns					
	t _{PLH}		Open-drain driving	133	69	51						
Enable Time	t _{EN} (t _{PZH} & t _{PZL})	OE to A or B		24	20	18	ns					
Disable Time	t _{DIS} (t _{PHZ} & t _{PLZ})	OE to A or B		1200	1200	1200	ns					
	t _{rA}	A Ports	Push-pull driving	6.6	5.8	5.4	no					
Rise Time		APOILS	Open-drain driving	89	31	10	ns					
Rise fille	t _{rB}	B Ports	Push-pull driving	5.6	4.6	3.9	no					
		ι _{rB}	ч _{гВ}	ι _{rB}	ι _{rB}	ι _{rB}	ι _{rB}	D FUILS	Open-drain driving	128	98	58
	4	A Ports	Push-pull driving	2.9	2.7	2.6	20					
Fall Time	t _{fA}	APOILS	Open-drain driving	1.9	1.7	1.6	ns					
raii fiffie		B Ports	Push-pull driving	4.6	5.9	8.0	20					
	t _{fB}	D POILS	Open-drain driving	2.2	2.3	2.9	ns					
Channel-to-Channel Skew	t _{sko}	パル	1 13	0.5	0.5	0.5	ns					
Data Rate	也 没	Push-pull driving Open-drain driving		21	22	24	Mbps					
Data Nate	Pal P			2	2	2						

SWITCHING CHARACTERISTICS (continued)

($V_{CCA} = 2.5V$, $T_A = +25$ °C, unless otherwise noted.)

DADAMETED	CVMDOL	CONDITIONS		V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5V	UNITS
PARAMETER	SYMBOL			TYP	TYP	TYP	UNITS
			Push-pull driving	2.7	3.3	4.8	
	t _{PHL}	A to B	Open-drain driving	26.2	26.4	26.7	
		AIOB	Push-pull driving	2.6	2.4	2.3	ns
Propagation Delay	t _{PLH}		Open-drain driving	169	144	110	
Propagation Delay	4		Push-pull driving	2.4	2.3	2.4	
	t _{PHL}	B to A	Open-drain driving	26.3	26.4	26.5	
	4	D IO A	Push-pull driving	2.0	1.9	1.8	ns
	t _{PLH}		Open-drain driving	165	118	55	
Enable Time	t _{EN} (t _{PZH} & t _{PZL})	OE to A or B		23	19	16	ns
Disable Time	t _{DIS} (t _{PHZ} & t _{PLZ})	OE to A or B		1200	1200	1200	ns
	t _{rA}	A Ports	Push-pull driving	3.2	2.8	2.6	
Rise Time		APOILS	Open-drain driving	120	70	10	ns
Rise fillie		B Ports	Push-pull driving	4.5	3.4	2.6	
	t_{rB}	D POILS	Open-drain driving	122	96	62	ns
	4	A Ports	Push-pull driving	4.9	5.0	4.8	
Fall Time	t_fA	APOILS	Open-drain driving	2.0	1.9	1.7	ns
raii fiffie	4	B Ports	Push-pull driving	4.8	6.1	8.3	
	t_{fB}	D POILS	Open-drain driving	1.9	2.1	2.7	ns
Channel-to-Channel Skew	t _{sko}	: 17.72	1 10	0.5	0.5	0.5	ns
Data Rate	去极	Push-pull driving Open-drain driving		20	22	24	Mbps
Data Rate	Fall IV			2	2	2	

SWITCHING CHARACTERISTICS (continued)

($V_{CCA} = 3.3V$, $T_A = +25$ °C, unless otherwise noted.)

DADAMETED	OVMDOL	CONDITIONS		V _{CCB} = 3.3V	V _{CCB} = 5V	LINUTO		
PARAMETER	SYMBOL			TYP	TYP	UNITS		
			Push-pull driving	3.5	4.9			
	t _{PHL}	A 4- D	Open-drain driving	26.3	26.7			
	4	A to B	Push-pull driving	2.2	2.0	ns		
Propagation Delay	t _{PLH}		Open-drain driving	133	104			
Propagation Delay	4		Push-pull driving	3.0	3.2			
	t _{PHL}	B to A	Open-drain driving	26.6	26.8			
		BIOA	Push-pull driving	1.8	1.7	ns		
	t _{PLH}		Open-drain driving	132	83			
Enable Time	t _{EN} (t _{PZH} & t _{PZL})	OE to A or B		18	15	ns		
Disable Time	t _{DIS} (t _{PHZ} & t _{PLZ})	OE to A or B		1200	1200	ns		
	t _{rA}	4	t .	A Dorto	Push-pull driving	2.2	2.0	no
Diag Times		A Ports	Open-drain driving	87	36	ns		
Rise Time		B Ports	Push-pull driving	2.9	2.3	no		
	t _{rB}	B Ports	Open-drain driving	87	56	ns		
		A Danta	Push-pull driving	6.2	5.8			
Fall Times	t _{fA}	A Ports	Open-drain driving	2.3	2.0	ns		
Fall Time		D. Davida	Push-pull driving	6.5	8.2			
	t _{fB}	B Ports	Open-drain driving	2.0	2.5	ns		
Channel-to-Channel Skew	tsко	: KIL	1 130	0.5	0.5	ns		
Data Rate	出版	Push-pull driving	131	23	24	Mhna		
Data Kate	阳	Open-drain driving	W	2	2	Mbps		

SWITCHING CHARACTERISTICS (continued)

($V_{CCA} = 5V$, $T_A = +25$ °C, unless otherwise noted.)

	0.41501	CONDITIONS		V _{CCB} = 5V		
PARAMETER	SYMBOL			ТҮР	UNITS	
			Push-pull driving	5.4		
	t _{PHL}	A to D	Open-drain driving	26.7	no	
	4	A to B	Push-pull driving	1.9	ns	
Propagation Delay	t _{PLH}		Open-drain driving	120		
Propagation Delay	4		Push-pull driving	5.6		
	t _{PHL}	B to A	Open-drain driving	27.3	no	
	4	BIOA	Push-pull driving	1.7	ns	
	t _{PLH}		Open-drain driving	126		
Enable Time	t _{EN} (t _{PZH} & t _{PZL})	OE to A or B		16	ns	
Disable Time	t _{DIS} (t _{PHZ} & t _{PLZ})	OE to A or B		1200	ns	
	t _{rA}	A Ports	Push-pull driving	1.8	ns	
Rise Time		A Ports	Open-drain driving	79	IIS	
Rise fille		B Ports	Push-pull driving	2.2	, no	
	t _{rB}	B FOILS	Open-drain driving	73	ns	
	4	A Ports	Push-pull driving	8.7	no	
Fall Time	t _{fA}	A Ports	Open-drain driving	2.7	ns	
raii fiffie	4	B Ports	Push-pull driving	8.6	no	
t_{fB}		B Ports	Open-drain driving	2.4	ns	
Channel-to-Channel Skew	t _{sko}	: MY	1 130	0.5	ns	
Data Rate	出 被	Push-pull driving	13:10	24	Mbps	
Data Rate	Fal P	Open-drain driving	W	2	ININh2	

WAVEFORMS

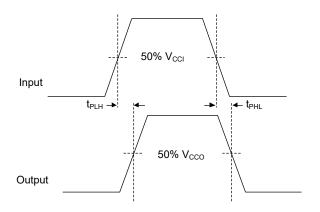


Figure 2. Propagation Delay

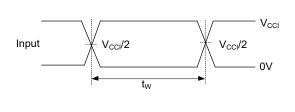


Figure 3. Pulse Duration

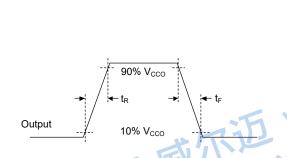
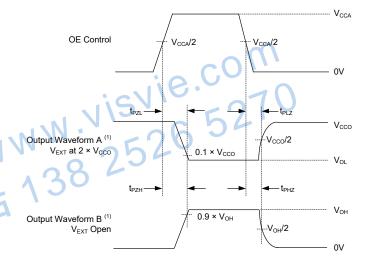
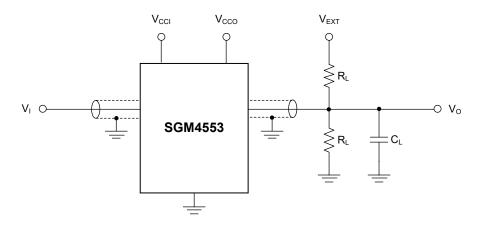



Figure 4. Rise Time and Fall Time of Data Output



NOTE:

1. Waveform A indicates an output that is high except for OE is high. Waveform B indicates an output that is low except for OE is high.

Figure 5. Enable and Disable Times

TEST CIRCUIT

Definitions for test circuit:

 R_L = Load resistance.

C_L = Load capacitance includes jig and probe capacitance.

V_{EXT} = External voltage for measuring switching times.

 V_{CCI} = Supply voltage associated with the input.

 V_{CCO} = Supply voltage associated with the output.

Figure 6. Test Circuit for Measuring Switching Times 5270

APPLICATION INFORMATION

Applications

The SGM4553 is a bridge between two digital systems with different power supplies as it can transmit the signal transparently. For the application of the SGM4553, the output driver is open-drain or push-pull to drive the I²C or one-wire bus. In addition, if a device with push-pull driver is connected to the I/O pin of the SGM4553, it will operate as normal.

Architecture

The SGM4553 can switch the direction of the transmission for port A and port B automatically without any external control.

There is no need to add an external direction control for the application of the SGM4553. Also, each I/O pin can be an input or output of the voltage translator.

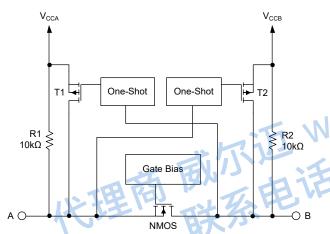


Figure 7. Architecture of an SGM4553 Cell

The explanation of two main parts of the internal circuit for the SGM4553 is shown as below:

- There is an NMOS between port A and port B to switch on or off the transmission.
- The one-shot accelerator can be used to accelerate the rising edges of the signal for port A and port B automatically.

Input Driver Requirements

The falling time of port A and port B and t_{PHL} depend on the output impedance of the connected device. The values of parameters which are t_{fA} , t_{fB} , t_{PHL} and data rates are specified when the resistance of external driver is less than 50Ω .

Power-Up

For the application of the SGM4553, the V_{CCA} should be less than V_{CCB} . However, it does not matter if the power supply voltage is ramping, and the sequence of power-up for both V_{CCA} and V_{CCB} is not defined.

Output Load Considerations

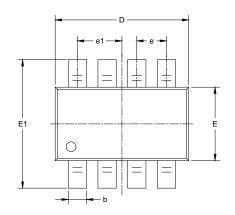
To decrease the extend of capacitive loading and ensure the proper triggering of O.S., the trace in PCB should be as short as possible. Also, to ensure that the round-trip reflection delay is smaller than the time period of one-shot, the users should also decrease the length of trace, which means that the signal integrity is guaranteed because of the low impedance for the reflection. The period of on-state for the O.S. part is 30ns. In addition, for the one-shot circuit, it can support lumped capacitive load. In addition, the one-shot circuit has the time-out function, which aims to handle the extremely heavy capacitive load. For the function of O.S. part of the SGM4553, it can optimize the trade-off between the capability of load driving, maximum bit-rate and dynamic supply current. The length of PCB trace and output connectors will be considered as the capacitive load of the device, which may result in the retriggering of O.S., contention of bus and the oscillations of the output.

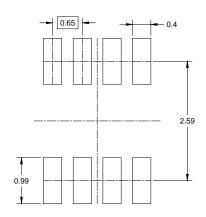
Enable and Disable

The function of OE is used to disable SGM4553 by setting the transmitting I/O pins to high-impedance mode. The pull-down current source is integrated inside OE once it is powered by V_{CCA} . The definition of disable time (t_{DIS}) is the time period between OE goes low and when all of the I/O pins are in high-impedance mode. The enable time (t_{EN}) is defined as the time period between OE goes to high position and one-shot part starts to operate.

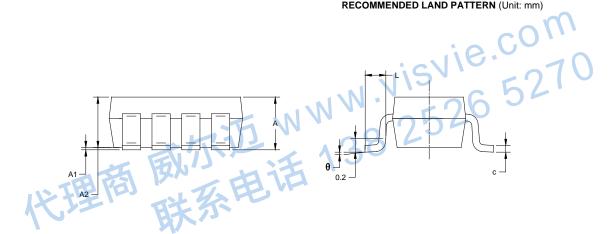
Pull-Up or Pull-Down Resistors on I/O Lines

For the I/O pin of A and B side, there is a $10k\Omega$ pull-up resistor to provide a high position for each I/O pin. However, if a smaller pull-up resistor is required, the users can add an external resistor which is parallel with the $10k\Omega$ resistor. Also, the value of V_{OL} can be affected by the added external resistor. In addition, if the user wants to disable the device, the OE pin can be simply set to low position.


REVISION HISTORY

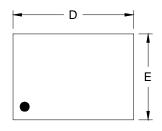

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

JUNE 2018 – REV.A.1 to REV.A.2	Page
Updated Marking Information section	2
MAY 2018 – REV.A to REV.A.1	Page
Added Package Thermal Resistance	2
Changes from Original (JUNE 2014) to REV.A	Page
Changed from product preview to production data	All

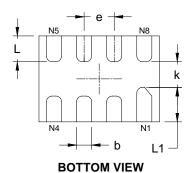


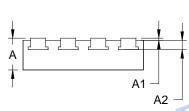
PACKAGE OUTLINE DIMENSIONS SOT-23-8

RECOMMENDED LAND PATTERN (Unit: mm)

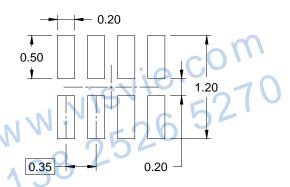


Symbol	_	nsions meters	Dimer In In	nsions ches
	MIN	MAX	MIN	MAX
А	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.650	BSC	0.026	BSC
e1	0.975	BSC	0.038	BSC
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°


- 1. Body dimensions do not include mode flash or protrusion.
- 2. This drawing is subject to change without notice.



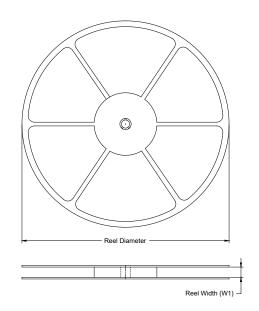
PACKAGE OUTLINE DIMENSIONS XTDFN-1.4×1-8L



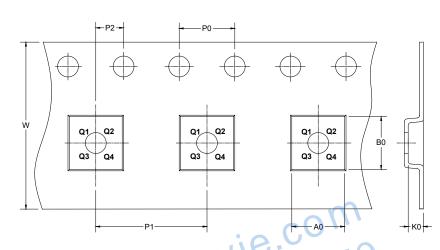
TOP VIEW

SIDE VIEW

RECOMMENDED LAND PATTERN (Unit: mm)


Symbol		nsions meters	Dimensions In Inches			
	MIN	MAX	MIN	MAX		
А	0.340	0.400	0.013	0.016		
A1	0.000	0.050	0.000	0.002		
A2	0.110	REF	0.004 REF			
D	1.350	1.450	0.053	0.057		
E	0.950	1.050	0.037	0.041		
k	0.200	MIN	0.008 MIN			
b	0.150	0.200	0.006	0.008		
е	0.350	TYP	0.014 TYP			
L	0.250	0.350	0.010	0.014		
L1	0.350	0.450	0.014	0.018		

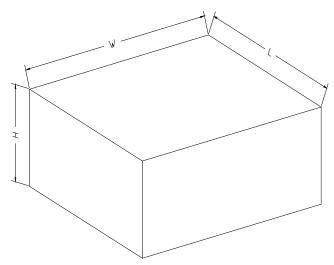
NOTE: This drawing is subject to change without notice.



TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS


DIRECTION OF FEED

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant	
SOT-23-8	7"	9.5	3.17	3.23	1.37	4.0	4.0	2.0	8.0	Q3	
XTDFN-1.4×1-8L	7"	9.5	1.15	1.60	0.50	4.0	4.0	2.0	8.0	Q1	DD0001

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

ı	KEY PARAMETI	ER LIST OF	CARTON B	ОХ	1.0	vie.com
	Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	26 5210
	7" (Option)	368	227	224	082	020
	7"	442	410	224	18	DD0002